{"title":"比较SimPoint的多项聚类和k-means聚类","authors":"Greg Hamerly, Erez Perelman, B. Calder","doi":"10.1109/ISPASS.2006.1620798","DOIUrl":null,"url":null,"abstract":"SimPoint is a technique used to pick what parts of the program's execution to simulate in order to have a complete picture of execution. SimPoint uses data clustering algorithms from machine learning to automatically find repetitive (similar) patterns in a program's execution, and it chooses one sample to represent each unique repetitive behavior. Together these samples represent an accurate picture of the complete execution of the program. SimPoint is based on the k-means clustering algorithm; recent work proposed using a different clustering method based on multinomial models, but only provided a preliminary comparison and analysis. In this work we provide a detailed comparison of using k-means and multinomial clustering for SimPoint. We show that k-means performs better than the recently proposed multinomial clustering approach. We then propose two improvements to the prior multinomial clustering approach in the areas of feature reduction and the picking of simulation points which allow multinomial clustering to perform as well as k-means. We then conclude by examining how to potentially combine multinomial clustering with k-means.","PeriodicalId":369192,"journal":{"name":"2006 IEEE International Symposium on Performance Analysis of Systems and Software","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Comparing multinomial and k-means clustering for SimPoint\",\"authors\":\"Greg Hamerly, Erez Perelman, B. Calder\",\"doi\":\"10.1109/ISPASS.2006.1620798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SimPoint is a technique used to pick what parts of the program's execution to simulate in order to have a complete picture of execution. SimPoint uses data clustering algorithms from machine learning to automatically find repetitive (similar) patterns in a program's execution, and it chooses one sample to represent each unique repetitive behavior. Together these samples represent an accurate picture of the complete execution of the program. SimPoint is based on the k-means clustering algorithm; recent work proposed using a different clustering method based on multinomial models, but only provided a preliminary comparison and analysis. In this work we provide a detailed comparison of using k-means and multinomial clustering for SimPoint. We show that k-means performs better than the recently proposed multinomial clustering approach. We then propose two improvements to the prior multinomial clustering approach in the areas of feature reduction and the picking of simulation points which allow multinomial clustering to perform as well as k-means. We then conclude by examining how to potentially combine multinomial clustering with k-means.\",\"PeriodicalId\":369192,\"journal\":{\"name\":\"2006 IEEE International Symposium on Performance Analysis of Systems and Software\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Symposium on Performance Analysis of Systems and Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPASS.2006.1620798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Symposium on Performance Analysis of Systems and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPASS.2006.1620798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparing multinomial and k-means clustering for SimPoint
SimPoint is a technique used to pick what parts of the program's execution to simulate in order to have a complete picture of execution. SimPoint uses data clustering algorithms from machine learning to automatically find repetitive (similar) patterns in a program's execution, and it chooses one sample to represent each unique repetitive behavior. Together these samples represent an accurate picture of the complete execution of the program. SimPoint is based on the k-means clustering algorithm; recent work proposed using a different clustering method based on multinomial models, but only provided a preliminary comparison and analysis. In this work we provide a detailed comparison of using k-means and multinomial clustering for SimPoint. We show that k-means performs better than the recently proposed multinomial clustering approach. We then propose two improvements to the prior multinomial clustering approach in the areas of feature reduction and the picking of simulation points which allow multinomial clustering to perform as well as k-means. We then conclude by examining how to potentially combine multinomial clustering with k-means.