基于情景分类和神经网络的自动驾驶汽车路况分析

Bence Dávid, Gergő Láncz, Gergely Hunyady
{"title":"基于情景分类和神经网络的自动驾驶汽车路况分析","authors":"Bence Dávid, Gergő Láncz, Gergely Hunyady","doi":"10.1109/SAMI.2019.8782729","DOIUrl":null,"url":null,"abstract":"The development of autonomous vehicles is one of the most active research areas in the automotive industry. The objective of this study is to present a concept for analysing the situation the vehicle is currently in, providing the necessary information to high level decision making algorithms. Our work focuses on a neural network based approach for assessing risks for each of the dynamically available manoeuvres in real-time and recognizing certain traffic scenarios to prepare the decision making and affect the outcome of the behaviour planner function regarding road safety. This paper provides insight to our research we carried out in collaboration with the Commercial Vehicle Systems Division of Knorr-Bremse Fékrendszerek Kft. Given the profile of the group, the aim of our study concentrated on heavy duty commercial vehicles, although the discussed algorithms are not truck-specific.","PeriodicalId":240256,"journal":{"name":"2019 IEEE 17th World Symposium on Applied Machine Intelligence and Informatics (SAMI)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Highway Situation Analysis with Scenario Classification and Neural Network based Risk Estimation for Autonomous Vehicles\",\"authors\":\"Bence Dávid, Gergő Láncz, Gergely Hunyady\",\"doi\":\"10.1109/SAMI.2019.8782729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of autonomous vehicles is one of the most active research areas in the automotive industry. The objective of this study is to present a concept for analysing the situation the vehicle is currently in, providing the necessary information to high level decision making algorithms. Our work focuses on a neural network based approach for assessing risks for each of the dynamically available manoeuvres in real-time and recognizing certain traffic scenarios to prepare the decision making and affect the outcome of the behaviour planner function regarding road safety. This paper provides insight to our research we carried out in collaboration with the Commercial Vehicle Systems Division of Knorr-Bremse Fékrendszerek Kft. Given the profile of the group, the aim of our study concentrated on heavy duty commercial vehicles, although the discussed algorithms are not truck-specific.\",\"PeriodicalId\":240256,\"journal\":{\"name\":\"2019 IEEE 17th World Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 17th World Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMI.2019.8782729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 17th World Symposium on Applied Machine Intelligence and Informatics (SAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMI.2019.8782729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

自动驾驶汽车的发展是汽车工业中最活跃的研究领域之一。本研究的目的是提出一个概念来分析车辆当前所处的情况,为高级决策算法提供必要的信息。我们的工作重点是基于神经网络的方法,用于实时评估每个动态可用操作的风险,并识别某些交通场景,以准备决策并影响有关道路安全的行为规划函数的结果。本文为我们与Knorr-Bremse f krendszerek Kft商用车系统部门合作开展的研究提供了见解。鉴于该群体的概况,我们的研究目标集中在重型商用车上,尽管所讨论的算法并非针对卡车。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Highway Situation Analysis with Scenario Classification and Neural Network based Risk Estimation for Autonomous Vehicles
The development of autonomous vehicles is one of the most active research areas in the automotive industry. The objective of this study is to present a concept for analysing the situation the vehicle is currently in, providing the necessary information to high level decision making algorithms. Our work focuses on a neural network based approach for assessing risks for each of the dynamically available manoeuvres in real-time and recognizing certain traffic scenarios to prepare the decision making and affect the outcome of the behaviour planner function regarding road safety. This paper provides insight to our research we carried out in collaboration with the Commercial Vehicle Systems Division of Knorr-Bremse Fékrendszerek Kft. Given the profile of the group, the aim of our study concentrated on heavy duty commercial vehicles, although the discussed algorithms are not truck-specific.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Navigation Based on Fuzzy Cognitive Maps for Needs of Ubiquitous Robotics WiFi vulnerability caused by SSID forgery in the IEEE 802.11 protocol Optimizing the use of renewable energy sources in the energy mix of Hungary Laboratory in Cloud for Model Systems of System Based Engineering Structures FEM analysis of natural frequencies of jet engine iSTC-21v turbine blade
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1