基于契约设计的产权证明系统

A. Cimatti, Stefano Tonetta
{"title":"基于契约设计的产权证明系统","authors":"A. Cimatti, Stefano Tonetta","doi":"10.1109/SEAA.2012.68","DOIUrl":null,"url":null,"abstract":"Contract-based design is an emerging paradigm for the design of complex systems, where each component is associated with a contract, i.e., a clear description of the expected behaviour. Contracts specify the input-output behaviour of a component by defining what the component guarantees, provided that the its environment obeys some given assumptions. The ultimate goal of contract-based design is to allow for compositional reasoning, stepwise refinement, and a principled reuse of components that are already pre-designed, or designed independently. In this paper, we present a novel, fully formal contract framework. The decomposition of the system architecture is complemented with the corresponding decomposition of component contracts. The framework exploits such decomposition to automatically generate a set of proof obligations, which, once verified, allow concluding the correctness of the top-level system properties. The framework relies on an expressive property specification language, conceived for the formalization of embedded system requirements. The proof system reduces the correctness of contracts refinement to entailment of temporal logic formulas, and is supported by a verification engine based on automated SMT techniques.","PeriodicalId":298734,"journal":{"name":"2012 38th Euromicro Conference on Software Engineering and Advanced Applications","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"84","resultStr":"{\"title\":\"A Property-Based Proof System for Contract-Based Design\",\"authors\":\"A. Cimatti, Stefano Tonetta\",\"doi\":\"10.1109/SEAA.2012.68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contract-based design is an emerging paradigm for the design of complex systems, where each component is associated with a contract, i.e., a clear description of the expected behaviour. Contracts specify the input-output behaviour of a component by defining what the component guarantees, provided that the its environment obeys some given assumptions. The ultimate goal of contract-based design is to allow for compositional reasoning, stepwise refinement, and a principled reuse of components that are already pre-designed, or designed independently. In this paper, we present a novel, fully formal contract framework. The decomposition of the system architecture is complemented with the corresponding decomposition of component contracts. The framework exploits such decomposition to automatically generate a set of proof obligations, which, once verified, allow concluding the correctness of the top-level system properties. The framework relies on an expressive property specification language, conceived for the formalization of embedded system requirements. The proof system reduces the correctness of contracts refinement to entailment of temporal logic formulas, and is supported by a verification engine based on automated SMT techniques.\",\"PeriodicalId\":298734,\"journal\":{\"name\":\"2012 38th Euromicro Conference on Software Engineering and Advanced Applications\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"84\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 38th Euromicro Conference on Software Engineering and Advanced Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEAA.2012.68\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 38th Euromicro Conference on Software Engineering and Advanced Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEAA.2012.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 84

摘要

基于契约的设计是复杂系统设计的新兴范例,其中每个组件都与契约相关联,即对预期行为的清晰描述。契约通过定义组件所保证的内容来指定组件的输入-输出行为,前提是其环境遵循某些给定的假设。基于契约的设计的最终目标是允许组合推理、逐步细化和有原则地重用已经预先设计或独立设计的组件。在本文中,我们提出了一个新颖的、完全正式的契约框架。系统架构的分解与组件契约的相应分解相辅相成。框架利用这种分解来自动生成一组证明义务,一旦验证,就可以得出顶级系统属性的正确性。该框架依赖于一种表达性的属性规范语言,该语言是为形式化嵌入式系统需求而设计的。该证明系统将契约细化的正确性简化为时间逻辑公式的蕴涵,并由基于自动化SMT技术的验证引擎提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Property-Based Proof System for Contract-Based Design
Contract-based design is an emerging paradigm for the design of complex systems, where each component is associated with a contract, i.e., a clear description of the expected behaviour. Contracts specify the input-output behaviour of a component by defining what the component guarantees, provided that the its environment obeys some given assumptions. The ultimate goal of contract-based design is to allow for compositional reasoning, stepwise refinement, and a principled reuse of components that are already pre-designed, or designed independently. In this paper, we present a novel, fully formal contract framework. The decomposition of the system architecture is complemented with the corresponding decomposition of component contracts. The framework exploits such decomposition to automatically generate a set of proof obligations, which, once verified, allow concluding the correctness of the top-level system properties. The framework relies on an expressive property specification language, conceived for the formalization of embedded system requirements. The proof system reduces the correctness of contracts refinement to entailment of temporal logic formulas, and is supported by a verification engine based on automated SMT techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
TIRT: A Traceability Information Retrieval Tool for Software Product Lines Projects Differentiation in the Cloud: Methodology for Integrating Customer Values in Experience Design A Case Study on Measuring Process Quality: Lessons Learned Bee-Inpired Road Traffic Control as an Example of Swarm Intelligence in Cyber-Physical Systems Developers Motivation in Agile Teams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1