支持向量机与神经网络算法在无人机检测系统中的比较

Risa Farrid Christianti, Hanin Latif Fuadi, M. Afandi, Azhari S.N., Andi Dharmawan
{"title":"支持向量机与神经网络算法在无人机检测系统中的比较","authors":"Risa Farrid Christianti, Hanin Latif Fuadi, M. Afandi, Azhari S.N., Andi Dharmawan","doi":"10.1109/CyberneticsCom55287.2022.9865628","DOIUrl":null,"url":null,"abstract":"With the increase in the number of drones, it is possible to have the danger of using drones illegally. It is crucial to detect adverse events or conditions so that security operators can obtain that information and situational identification of drones. This paper proposes two methods of classifying acoustic sensor data in a UAV detection system, using Support Vector Machine and Neural Network, that will be compared. This research shows that the accuracy achieved in predicting acoustic sensor data is 82.27% in the SVM method. The accuracy achieved is 90.58% for the NN method under the same input conditions and amount of training data. This comparation needs to do to choose the best accuracy in a public safety environment.","PeriodicalId":178279,"journal":{"name":"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Support Vector Machine and Neural Network Algorithm in Drone Detection System\",\"authors\":\"Risa Farrid Christianti, Hanin Latif Fuadi, M. Afandi, Azhari S.N., Andi Dharmawan\",\"doi\":\"10.1109/CyberneticsCom55287.2022.9865628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increase in the number of drones, it is possible to have the danger of using drones illegally. It is crucial to detect adverse events or conditions so that security operators can obtain that information and situational identification of drones. This paper proposes two methods of classifying acoustic sensor data in a UAV detection system, using Support Vector Machine and Neural Network, that will be compared. This research shows that the accuracy achieved in predicting acoustic sensor data is 82.27% in the SVM method. The accuracy achieved is 90.58% for the NN method under the same input conditions and amount of training data. This comparation needs to do to choose the best accuracy in a public safety environment.\",\"PeriodicalId\":178279,\"journal\":{\"name\":\"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CyberneticsCom55287.2022.9865628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CyberneticsCom55287.2022.9865628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着无人机数量的增加,可能会出现非法使用无人机的危险。检测不利事件或条件至关重要,这样安全操作员才能获得无人机的信息和态势识别。本文提出了两种基于支持向量机和神经网络的无人机探测系统声传感器数据分类方法,并进行了比较。研究表明,SVM方法对声传感器数据的预测准确率为82.27%。在相同的输入条件和训练数据量下,NN方法的准确率达到90.58%。这种比较需要在一个公共安全的环境中做选择最准确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of Support Vector Machine and Neural Network Algorithm in Drone Detection System
With the increase in the number of drones, it is possible to have the danger of using drones illegally. It is crucial to detect adverse events or conditions so that security operators can obtain that information and situational identification of drones. This paper proposes two methods of classifying acoustic sensor data in a UAV detection system, using Support Vector Machine and Neural Network, that will be compared. This research shows that the accuracy achieved in predicting acoustic sensor data is 82.27% in the SVM method. The accuracy achieved is 90.58% for the NN method under the same input conditions and amount of training data. This comparation needs to do to choose the best accuracy in a public safety environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Method of Electroencephalography Electrode Selection for Motor Imagery Application Aspect-based Sentiment Analysis for Improving Online Learning Program Based on Student Feedback Fuzzy Logic Control Strategy for Axial Flux Permanent Magnet Synchronous Generator in WHM 1.5KW Welcome Message from General Chair The 6th Cyberneticscom 2022 Performance Comparison of AODV, AODV-ETX and Modified AODV-ETX in VANET using NS3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1