持久的网络编码分布式存储

Vitaly Abdrashitov, M. Médard
{"title":"持久的网络编码分布式存储","authors":"Vitaly Abdrashitov, M. Médard","doi":"10.1109/ALLERTON.2015.7447095","DOIUrl":null,"url":null,"abstract":"In distributed cloud storages fault tolerance is maintained by regenerating the lost coded data from the surviving clouds. Recent studies suggest using maximum distance separable (MDS) network codes in cloud storage systems to allow efficient and reliable recovery after node faults. MDS codes are designed to use a substantial number of repair nodes and rely on centralized management and a static fully connected network between the nodes. However, in highly dynamic environments, like edge caching in communication networks or peer-to-peer networks, availability of the nodes and the communication links is very volatile. In these scenarios MDS codes functionality is limited. In this paper we study a non-MDS network coded approach, which operates in a decentralized manner and requires a small number of repair nodes for node recovery. We investigate long-term behavior and durability of the modeled system in terms of the storage life time, i.e. the number of the cycles of nodes failure and recovery after which the storage no longer have enough data to decode the original source packets. We demonstrate, analytically and numerically, the life time gains over uncoded storage.","PeriodicalId":112948,"journal":{"name":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Durable network coded distributed storage\",\"authors\":\"Vitaly Abdrashitov, M. Médard\",\"doi\":\"10.1109/ALLERTON.2015.7447095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In distributed cloud storages fault tolerance is maintained by regenerating the lost coded data from the surviving clouds. Recent studies suggest using maximum distance separable (MDS) network codes in cloud storage systems to allow efficient and reliable recovery after node faults. MDS codes are designed to use a substantial number of repair nodes and rely on centralized management and a static fully connected network between the nodes. However, in highly dynamic environments, like edge caching in communication networks or peer-to-peer networks, availability of the nodes and the communication links is very volatile. In these scenarios MDS codes functionality is limited. In this paper we study a non-MDS network coded approach, which operates in a decentralized manner and requires a small number of repair nodes for node recovery. We investigate long-term behavior and durability of the modeled system in terms of the storage life time, i.e. the number of the cycles of nodes failure and recovery after which the storage no longer have enough data to decode the original source packets. We demonstrate, analytically and numerically, the life time gains over uncoded storage.\",\"PeriodicalId\":112948,\"journal\":{\"name\":\"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2015.7447095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2015.7447095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在分布式云存储中,通过从幸存的云中重新生成丢失的编码数据来维持容错。最近的研究建议在云存储系统中使用最大距离可分离(MDS)网络代码,以实现节点故障后高效可靠的恢复。MDS代码的设计是使用大量的修复节点,依靠集中管理和节点之间的静态全连接网络。然而,在高度动态的环境中,比如通信网络或对等网络中的边缘缓存,节点和通信链路的可用性是非常不稳定的。在这些情况下,MDS代码的功能是有限的。本文研究了一种非mds网络编码方法,该方法以分散的方式运行,需要少量的修复节点进行节点恢复。我们根据存储寿命时间来研究建模系统的长期行为和持久性,即节点故障和恢复周期的数量,之后存储不再有足够的数据来解码原始源数据包。我们用分析和数值的方法证明了非编码存储的寿命增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Durable network coded distributed storage
In distributed cloud storages fault tolerance is maintained by regenerating the lost coded data from the surviving clouds. Recent studies suggest using maximum distance separable (MDS) network codes in cloud storage systems to allow efficient and reliable recovery after node faults. MDS codes are designed to use a substantial number of repair nodes and rely on centralized management and a static fully connected network between the nodes. However, in highly dynamic environments, like edge caching in communication networks or peer-to-peer networks, availability of the nodes and the communication links is very volatile. In these scenarios MDS codes functionality is limited. In this paper we study a non-MDS network coded approach, which operates in a decentralized manner and requires a small number of repair nodes for node recovery. We investigate long-term behavior and durability of the modeled system in terms of the storage life time, i.e. the number of the cycles of nodes failure and recovery after which the storage no longer have enough data to decode the original source packets. We demonstrate, analytically and numerically, the life time gains over uncoded storage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust temporal logic model predictive control Efficient replication of queued tasks for latency reduction in cloud systems Cut-set bound is loose for Gaussian relay networks Improving MIMO detection performance in presence of phase noise using norm difference criterion Utility fair RAT selection in multi-homed LTE/802.11 networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1