I. Kaldre, M. Milgrāvis, A. Bojarevičs, T. Beinerts
{"title":"增材制造用颗粒强化铝合金定向凝固过程中的电磁处理","authors":"I. Kaldre, M. Milgrāvis, A. Bojarevičs, T. Beinerts","doi":"10.3390/iec2m-09255","DOIUrl":null,"url":null,"abstract":"The rise of metal additive manufacturing technology has increased the demand for high-performance alloys such as metal matrix composites (MMCs). The metallurgical production of MMCs remains a challenge. The nano-powder of dielectric particles does not mix well into the liquid metal because of several reasons. On a macroscopic level, the powder is rejected by the molten metal through buoyancy and surface tension forces. On a microscopic level, the particles are held together by Van der Waals forces forming particle agglomerates. Our research strategy is to address these issues separately in two steps. We are investigating an electromagnetically assisted MMC casting method for the production of particle-strengthened, directionally solidified aluminum alloys. In the first step, nanoparticles are mixed into melt while it is in a semi-solid state by efficient permanent magnet stirrers. Then, the alloy is subjected to ultrasound treatment for fine particle dispersion. Semi-continuous casting of MMC is used to obtain material for additive manufacturing process. Material is cast in 6–20 mm rods by a direct chill casting method and can be made into wire with the application of wire-feed additive manufacturing. We investigate the possibility of improving Al alloy SiC composite material properties by applying electromagnetic interactions during solidification. Electric current and a moderate static magnetic field (0.1–0.5 T) creates melt convection in mushy zone. Such interaction enhances heat and mass transfer near the solidification interface and hinders the re-agglomeration of the added particles.","PeriodicalId":429720,"journal":{"name":"Proceedings of The 1st International Electronic Conference on Metallurgy and Metals","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Electromagnetic processing during directional solidification of particle strengthened Aluminum alloys for additive manufacturing\",\"authors\":\"I. Kaldre, M. Milgrāvis, A. Bojarevičs, T. Beinerts\",\"doi\":\"10.3390/iec2m-09255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rise of metal additive manufacturing technology has increased the demand for high-performance alloys such as metal matrix composites (MMCs). The metallurgical production of MMCs remains a challenge. The nano-powder of dielectric particles does not mix well into the liquid metal because of several reasons. On a macroscopic level, the powder is rejected by the molten metal through buoyancy and surface tension forces. On a microscopic level, the particles are held together by Van der Waals forces forming particle agglomerates. Our research strategy is to address these issues separately in two steps. We are investigating an electromagnetically assisted MMC casting method for the production of particle-strengthened, directionally solidified aluminum alloys. In the first step, nanoparticles are mixed into melt while it is in a semi-solid state by efficient permanent magnet stirrers. Then, the alloy is subjected to ultrasound treatment for fine particle dispersion. Semi-continuous casting of MMC is used to obtain material for additive manufacturing process. Material is cast in 6–20 mm rods by a direct chill casting method and can be made into wire with the application of wire-feed additive manufacturing. We investigate the possibility of improving Al alloy SiC composite material properties by applying electromagnetic interactions during solidification. Electric current and a moderate static magnetic field (0.1–0.5 T) creates melt convection in mushy zone. Such interaction enhances heat and mass transfer near the solidification interface and hinders the re-agglomeration of the added particles.\",\"PeriodicalId\":429720,\"journal\":{\"name\":\"Proceedings of The 1st International Electronic Conference on Metallurgy and Metals\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The 1st International Electronic Conference on Metallurgy and Metals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/iec2m-09255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 1st International Electronic Conference on Metallurgy and Metals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/iec2m-09255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electromagnetic processing during directional solidification of particle strengthened Aluminum alloys for additive manufacturing
The rise of metal additive manufacturing technology has increased the demand for high-performance alloys such as metal matrix composites (MMCs). The metallurgical production of MMCs remains a challenge. The nano-powder of dielectric particles does not mix well into the liquid metal because of several reasons. On a macroscopic level, the powder is rejected by the molten metal through buoyancy and surface tension forces. On a microscopic level, the particles are held together by Van der Waals forces forming particle agglomerates. Our research strategy is to address these issues separately in two steps. We are investigating an electromagnetically assisted MMC casting method for the production of particle-strengthened, directionally solidified aluminum alloys. In the first step, nanoparticles are mixed into melt while it is in a semi-solid state by efficient permanent magnet stirrers. Then, the alloy is subjected to ultrasound treatment for fine particle dispersion. Semi-continuous casting of MMC is used to obtain material for additive manufacturing process. Material is cast in 6–20 mm rods by a direct chill casting method and can be made into wire with the application of wire-feed additive manufacturing. We investigate the possibility of improving Al alloy SiC composite material properties by applying electromagnetic interactions during solidification. Electric current and a moderate static magnetic field (0.1–0.5 T) creates melt convection in mushy zone. Such interaction enhances heat and mass transfer near the solidification interface and hinders the re-agglomeration of the added particles.