自组织映射中的协作控制和增强类结构

R. Kamimura
{"title":"自组织映射中的协作控制和增强类结构","authors":"R. Kamimura","doi":"10.1109/IJCNN.2011.6033288","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new type of information-theoretic method called “information-theoretic cooperative learning.” In this method, two networks, namely, cooperative and uncooperative networks are prepared. The roles of these networks are controlled by the cooperation parameter α. As the parameter is increased, the role of cooperative networks becomes more important in learning. We applied the method to the automobile data from the machine learning database. Experimental results showed that cooperation control could be used to increase mutual information on input patterns and to produce clearer class structure in SOM.","PeriodicalId":415833,"journal":{"name":"The 2011 International Joint Conference on Neural Networks","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cooperation control and enhanced class structure in self-organizing maps\",\"authors\":\"R. Kamimura\",\"doi\":\"10.1109/IJCNN.2011.6033288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new type of information-theoretic method called “information-theoretic cooperative learning.” In this method, two networks, namely, cooperative and uncooperative networks are prepared. The roles of these networks are controlled by the cooperation parameter α. As the parameter is increased, the role of cooperative networks becomes more important in learning. We applied the method to the automobile data from the machine learning database. Experimental results showed that cooperation control could be used to increase mutual information on input patterns and to produce clearer class structure in SOM.\",\"PeriodicalId\":415833,\"journal\":{\"name\":\"The 2011 International Joint Conference on Neural Networks\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2011 International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2011.6033288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2011.6033288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种新型的信息论学习方法——“信息论合作学习”。该方法制备了两个网络,即合作网络和非合作网络。这些网络的作用由合作参数α控制。随着参数的增大,合作网络在学习中的作用越来越重要。我们将该方法应用于机器学习数据库中的汽车数据。实验结果表明,合作控制可以增加输入模式的互信息,并在SOM中产生更清晰的类结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cooperation control and enhanced class structure in self-organizing maps
In this paper, we propose a new type of information-theoretic method called “information-theoretic cooperative learning.” In this method, two networks, namely, cooperative and uncooperative networks are prepared. The roles of these networks are controlled by the cooperation parameter α. As the parameter is increased, the role of cooperative networks becomes more important in learning. We applied the method to the automobile data from the machine learning database. Experimental results showed that cooperation control could be used to increase mutual information on input patterns and to produce clearer class structure in SOM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaos of protein folding EEG-based brain dynamics of driving distraction Residential energy system control and management using adaptive dynamic programming How the core theory of CLARION captures human decision-making Wiener systems for reconstruction of missing seismic traces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1