用Tree CRFs解析泰米尔语中的代词

R. Ram, S. L. Devi
{"title":"用Tree CRFs解析泰米尔语中的代词","authors":"R. Ram, S. L. Devi","doi":"10.1109/IALP.2013.59","DOIUrl":null,"url":null,"abstract":"We describe our work on pronominal resolution in Tamil using Tree CRFs. Pronominal resolution is the task of identifying the referent of a pronominal. In this work we have studied third person pronouns in Tamil such as 'avan', 'aval', 'athu', 'avar', he, she, it and they respectively. Tamil is a Dravidian language and it is morphologically rich and highly agglutinative language. Tree CRFs is a machine learning method, in which the data is modeled as a graph with edge weights used for learning. The features for learning are developed by using the morphological features of the language. The work is carried out on tourism domain data from the Web. We have obtained 70.8% precision and 66.5% recall. The results are encouraging.","PeriodicalId":413833,"journal":{"name":"2013 International Conference on Asian Language Processing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Pronominal Resolution in Tamil Using Tree CRFs\",\"authors\":\"R. Ram, S. L. Devi\",\"doi\":\"10.1109/IALP.2013.59\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe our work on pronominal resolution in Tamil using Tree CRFs. Pronominal resolution is the task of identifying the referent of a pronominal. In this work we have studied third person pronouns in Tamil such as 'avan', 'aval', 'athu', 'avar', he, she, it and they respectively. Tamil is a Dravidian language and it is morphologically rich and highly agglutinative language. Tree CRFs is a machine learning method, in which the data is modeled as a graph with edge weights used for learning. The features for learning are developed by using the morphological features of the language. The work is carried out on tourism domain data from the Web. We have obtained 70.8% precision and 66.5% recall. The results are encouraging.\",\"PeriodicalId\":413833,\"journal\":{\"name\":\"2013 International Conference on Asian Language Processing\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Asian Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP.2013.59\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Asian Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2013.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们使用Tree CRFs描述我们在泰米尔语代词解决方面的工作。代词解析是识别代词所指对象的任务。在这项工作中,我们研究了泰米尔语中的第三人称代词,如“avan”,“aval”,“athu”,“avar”,他,她,它和他们。泰米尔语是一种德拉威语,它是一种形态丰富且高度粘连的语言。Tree CRFs是一种机器学习方法,它将数据建模为带有边缘权重的图,用于学习。学习的特征是利用语言的形态特征来发展的。该工作是在来自Web的旅游领域数据上进行的。我们获得了70.8%的准确率和66.5%的召回率。结果令人鼓舞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pronominal Resolution in Tamil Using Tree CRFs
We describe our work on pronominal resolution in Tamil using Tree CRFs. Pronominal resolution is the task of identifying the referent of a pronominal. In this work we have studied third person pronouns in Tamil such as 'avan', 'aval', 'athu', 'avar', he, she, it and they respectively. Tamil is a Dravidian language and it is morphologically rich and highly agglutinative language. Tree CRFs is a machine learning method, in which the data is modeled as a graph with edge weights used for learning. The features for learning are developed by using the morphological features of the language. The work is carried out on tourism domain data from the Web. We have obtained 70.8% precision and 66.5% recall. The results are encouraging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Judgment, Extraction and Selective Restriction of Chinese Eventive Verb Categorization and Identification of Fragments with Shi Plus Punctuation Feature Abstraction for Lightweight and Accurate Chinese Word Segmentation The Comparative Research on the Segmentation Strategies of Tibetan Bounded-Variant Forms An Empirical Evaluation of Dimensionality Reduction Using Latent Semantic Analysis on Hindi Text
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1