确定性和随机CFD问题的双级并行性

S. Dong, G. Karniadakis
{"title":"确定性和随机CFD问题的双级并行性","authors":"S. Dong, G. Karniadakis","doi":"10.1109/SC.2002.10005","DOIUrl":null,"url":null,"abstract":"A hybrid two-level parallelism using MPI/OpenMP is implemented in the general-purpose spectral/hp element CFD code NekTar to take advantage of the hierarchical structures arising in deterministic and stochastic CFD problems. We take a coarse grain approach to shared-memory parallelism with OpenMP and employ a workload-splitting scheme that can reduce the OpenMP synchronizations to the minimum. The hybrid implementation shows good scalability with respect to both the problem size and the number of processors in case of a fixed problem size. With the same number of processors, the hybrid model with 2 (or 4) OpenMP threads per MPI process is observed to perform better than pure MPI and pure OpenMP on the NCSA SGI Origin 2000, while the pure MPI model performs the best on the IBM SP3 at SDSC and on the Compaq Alpha cluster at PSC. A key new result is that the use of threads facilitates effectively p-refinement, which is crucial to adaptive discretization using high-order methods.","PeriodicalId":302800,"journal":{"name":"ACM/IEEE SC 2002 Conference (SC'02)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Dual-Level Parallelism for Deterministic and Stochastic CFD Problems\",\"authors\":\"S. Dong, G. Karniadakis\",\"doi\":\"10.1109/SC.2002.10005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hybrid two-level parallelism using MPI/OpenMP is implemented in the general-purpose spectral/hp element CFD code NekTar to take advantage of the hierarchical structures arising in deterministic and stochastic CFD problems. We take a coarse grain approach to shared-memory parallelism with OpenMP and employ a workload-splitting scheme that can reduce the OpenMP synchronizations to the minimum. The hybrid implementation shows good scalability with respect to both the problem size and the number of processors in case of a fixed problem size. With the same number of processors, the hybrid model with 2 (or 4) OpenMP threads per MPI process is observed to perform better than pure MPI and pure OpenMP on the NCSA SGI Origin 2000, while the pure MPI model performs the best on the IBM SP3 at SDSC and on the Compaq Alpha cluster at PSC. A key new result is that the use of threads facilitates effectively p-refinement, which is crucial to adaptive discretization using high-order methods.\",\"PeriodicalId\":302800,\"journal\":{\"name\":\"ACM/IEEE SC 2002 Conference (SC'02)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM/IEEE SC 2002 Conference (SC'02)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC.2002.10005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE SC 2002 Conference (SC'02)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.2002.10005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

利用MPI/OpenMP在通用谱/hp元CFD代码NekTar中实现了混合两级并行,以利用确定性和随机CFD问题中出现的分层结构。我们对OpenMP的共享内存并行性采用粗粒度方法,并采用工作负载分割方案,可以将OpenMP同步减少到最低限度。在固定问题大小的情况下,混合实现在问题大小和处理器数量方面都显示出良好的可伸缩性。在处理器数量相同的情况下,在NCSA SGI Origin 2000上,每个MPI进程具有2(或4)个OpenMP线程的混合模型的性能优于纯MPI和纯OpenMP,而纯MPI模型在SDSC上的IBM SP3和PSC上的Compaq Alpha集群上的性能最好。一个关键的新结果是线程的使用促进了有效的p-细化,这对于使用高阶方法进行自适应离散化至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dual-Level Parallelism for Deterministic and Stochastic CFD Problems
A hybrid two-level parallelism using MPI/OpenMP is implemented in the general-purpose spectral/hp element CFD code NekTar to take advantage of the hierarchical structures arising in deterministic and stochastic CFD problems. We take a coarse grain approach to shared-memory parallelism with OpenMP and employ a workload-splitting scheme that can reduce the OpenMP synchronizations to the minimum. The hybrid implementation shows good scalability with respect to both the problem size and the number of processors in case of a fixed problem size. With the same number of processors, the hybrid model with 2 (or 4) OpenMP threads per MPI process is observed to perform better than pure MPI and pure OpenMP on the NCSA SGI Origin 2000, while the pure MPI model performs the best on the IBM SP3 at SDSC and on the Compaq Alpha cluster at PSC. A key new result is that the use of threads facilitates effectively p-refinement, which is crucial to adaptive discretization using high-order methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interoperable Web Services for Computational Portals Advanced Visualization Technology for Terascale Particle Accelerator Simulations Library Support for Hierarchical Multi-Processor Tasks Utilization of Departmental Computing GRID System for Development of an Artificial Intelligent Tapping Inspection Method, Tapping Sound Analysis 16.4-Tflops Direct Numerical Simulation of Turbulence by a Fourier Spectral Method on the Earth Simulator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1