{"title":"基于神经网络的语音识别非线性判别分析","authors":"V. Fontaine, C. Ris, H. Leich","doi":"10.5281/ZENODO.36303","DOIUrl":null,"url":null,"abstract":"Linear Discriminant Analysis (LDA) has been applied successfully to speech recognition tasks, improving accuracy and robustness against some types of noise. However, it is well known that LDA suffers from some weaknesses if the distributions are not unimodal or when the mean of the distributions are shared. In this paper, we propose to take advantage of the nonlinear discriminant properties of the Artificial Neural Networks (ANN) in the task of reducing the dimensionality of the input space, leading to a nonlinear discriminant analysis.","PeriodicalId":282153,"journal":{"name":"1996 8th European Signal Processing Conference (EUSIPCO 1996)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Nonlinear discriminant analysis with neural networks for speech recognition\",\"authors\":\"V. Fontaine, C. Ris, H. Leich\",\"doi\":\"10.5281/ZENODO.36303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linear Discriminant Analysis (LDA) has been applied successfully to speech recognition tasks, improving accuracy and robustness against some types of noise. However, it is well known that LDA suffers from some weaknesses if the distributions are not unimodal or when the mean of the distributions are shared. In this paper, we propose to take advantage of the nonlinear discriminant properties of the Artificial Neural Networks (ANN) in the task of reducing the dimensionality of the input space, leading to a nonlinear discriminant analysis.\",\"PeriodicalId\":282153,\"journal\":{\"name\":\"1996 8th European Signal Processing Conference (EUSIPCO 1996)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1996 8th European Signal Processing Conference (EUSIPCO 1996)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.36303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 8th European Signal Processing Conference (EUSIPCO 1996)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.36303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonlinear discriminant analysis with neural networks for speech recognition
Linear Discriminant Analysis (LDA) has been applied successfully to speech recognition tasks, improving accuracy and robustness against some types of noise. However, it is well known that LDA suffers from some weaknesses if the distributions are not unimodal or when the mean of the distributions are shared. In this paper, we propose to take advantage of the nonlinear discriminant properties of the Artificial Neural Networks (ANN) in the task of reducing the dimensionality of the input space, leading to a nonlinear discriminant analysis.