基于神经网络的语音识别非线性判别分析

V. Fontaine, C. Ris, H. Leich
{"title":"基于神经网络的语音识别非线性判别分析","authors":"V. Fontaine, C. Ris, H. Leich","doi":"10.5281/ZENODO.36303","DOIUrl":null,"url":null,"abstract":"Linear Discriminant Analysis (LDA) has been applied successfully to speech recognition tasks, improving accuracy and robustness against some types of noise. However, it is well known that LDA suffers from some weaknesses if the distributions are not unimodal or when the mean of the distributions are shared. In this paper, we propose to take advantage of the nonlinear discriminant properties of the Artificial Neural Networks (ANN) in the task of reducing the dimensionality of the input space, leading to a nonlinear discriminant analysis.","PeriodicalId":282153,"journal":{"name":"1996 8th European Signal Processing Conference (EUSIPCO 1996)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Nonlinear discriminant analysis with neural networks for speech recognition\",\"authors\":\"V. Fontaine, C. Ris, H. Leich\",\"doi\":\"10.5281/ZENODO.36303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linear Discriminant Analysis (LDA) has been applied successfully to speech recognition tasks, improving accuracy and robustness against some types of noise. However, it is well known that LDA suffers from some weaknesses if the distributions are not unimodal or when the mean of the distributions are shared. In this paper, we propose to take advantage of the nonlinear discriminant properties of the Artificial Neural Networks (ANN) in the task of reducing the dimensionality of the input space, leading to a nonlinear discriminant analysis.\",\"PeriodicalId\":282153,\"journal\":{\"name\":\"1996 8th European Signal Processing Conference (EUSIPCO 1996)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1996 8th European Signal Processing Conference (EUSIPCO 1996)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.36303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 8th European Signal Processing Conference (EUSIPCO 1996)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.36303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

线性判别分析(LDA)已成功地应用于语音识别任务,提高了对某些类型噪声的准确性和鲁棒性。然而,众所周知,如果分布不是单峰的,或者分布的平均值是共享的,那么LDA就会有一些弱点。在本文中,我们提出利用人工神经网络(ANN)的非线性判别特性来降低输入空间的维数,从而进行非线性判别分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlinear discriminant analysis with neural networks for speech recognition
Linear Discriminant Analysis (LDA) has been applied successfully to speech recognition tasks, improving accuracy and robustness against some types of noise. However, it is well known that LDA suffers from some weaknesses if the distributions are not unimodal or when the mean of the distributions are shared. In this paper, we propose to take advantage of the nonlinear discriminant properties of the Artificial Neural Networks (ANN) in the task of reducing the dimensionality of the input space, leading to a nonlinear discriminant analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PDF Not Yet Available In IEEE Xplore Parameter estimation of exponentially damped sinusoids using second order statistics A multivariable Steiglitz-McBride method On the approximation of nonbandlimited signals by nonuniform sampling series Model reduction by Kautz filters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1