基于并行区域的目标识别系统

Bor-Yiing Su, T. Brutch, K. Keutzer
{"title":"基于并行区域的目标识别系统","authors":"Bor-Yiing Su, T. Brutch, K. Keutzer","doi":"10.1109/WACV.2011.5711487","DOIUrl":null,"url":null,"abstract":"Object recognition is a key problem in the field of computer vision. However, highly accurate object recognition systems are also computationally intensive, which limits their applicability. In this paper, we focus on a state-of-the-art object recognition system. We identify key computations of the system, examine efficient algorithms for parallelizing key computations, and develop a parallel object recognition system. The time taken by the training procedure on 127 images, with an average size of 0.15 M pixels, is reduced from 2332 seconds to 20 seconds. Similarly, the classification time of one 0.15 M pixel image is reduced from 331 seconds to 2.78 seconds. This efficient implementation of the object recognition system now makes it practical to train hundreds of images within minutes, and makes it possible to analyze image databases with hundreds or thousands of images in minutes, which was previously not possible.","PeriodicalId":424724,"journal":{"name":"2011 IEEE Workshop on Applications of Computer Vision (WACV)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A parallel region based object recognition system\",\"authors\":\"Bor-Yiing Su, T. Brutch, K. Keutzer\",\"doi\":\"10.1109/WACV.2011.5711487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object recognition is a key problem in the field of computer vision. However, highly accurate object recognition systems are also computationally intensive, which limits their applicability. In this paper, we focus on a state-of-the-art object recognition system. We identify key computations of the system, examine efficient algorithms for parallelizing key computations, and develop a parallel object recognition system. The time taken by the training procedure on 127 images, with an average size of 0.15 M pixels, is reduced from 2332 seconds to 20 seconds. Similarly, the classification time of one 0.15 M pixel image is reduced from 331 seconds to 2.78 seconds. This efficient implementation of the object recognition system now makes it practical to train hundreds of images within minutes, and makes it possible to analyze image databases with hundreds or thousands of images in minutes, which was previously not possible.\",\"PeriodicalId\":424724,\"journal\":{\"name\":\"2011 IEEE Workshop on Applications of Computer Vision (WACV)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Workshop on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2011.5711487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2011.5711487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

物体识别是计算机视觉领域的一个关键问题。然而,高精度的目标识别系统也需要大量的计算,这限制了它们的适用性。在本文中,我们重点研究了一个最先进的目标识别系统。我们确定了系统的关键计算,研究了并行关键计算的有效算法,并开发了一个并行目标识别系统。在127张平均大小为0.15 M像素的图像上,训练过程所花费的时间从2332秒减少到20秒。同样,一幅0.15 M像素图像的分类时间从331秒减少到2.78秒。物体识别系统的这种高效实现,现在可以在几分钟内训练数百张图像,并且可以在几分钟内分析数百或数千张图像的图像数据库,这在以前是不可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A parallel region based object recognition system
Object recognition is a key problem in the field of computer vision. However, highly accurate object recognition systems are also computationally intensive, which limits their applicability. In this paper, we focus on a state-of-the-art object recognition system. We identify key computations of the system, examine efficient algorithms for parallelizing key computations, and develop a parallel object recognition system. The time taken by the training procedure on 127 images, with an average size of 0.15 M pixels, is reduced from 2332 seconds to 20 seconds. Similarly, the classification time of one 0.15 M pixel image is reduced from 331 seconds to 2.78 seconds. This efficient implementation of the object recognition system now makes it practical to train hundreds of images within minutes, and makes it possible to analyze image databases with hundreds or thousands of images in minutes, which was previously not possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tracking planes with Time of Flight cameras and J-linkage Multi-modal visual concept classification of images via Markov random walk over tags Real-time illumination-invariant motion detection in spatio-temporal image volumes An evaluation of bags-of-words and spatio-temporal shapes for action recognition Illumination change compensation techniques to improve kinematic tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1