基于语义微聚合的隐私保护信息检索

Daniel Abril, G. Navarro-Arribas, V. Torra
{"title":"基于语义微聚合的隐私保护信息检索","authors":"Daniel Abril, G. Navarro-Arribas, V. Torra","doi":"10.1109/WI-IAT.2010.132","DOIUrl":null,"url":null,"abstract":"In this paper we introduce the problem of providing privacy preserving information for Web indexing, classification, and other information retrieval task. Web pages are represented by a frequency term vector that preserves k-anonymity for all the Web pages. This vector can then be used, for example, to build indexes of classifiers. Our proposal makes use of semantic micro aggregation.","PeriodicalId":197966,"journal":{"name":"Web Intelligence/IAT Workshops","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Towards Privacy Preserving Information Retrieval through Semantic Microaggregation\",\"authors\":\"Daniel Abril, G. Navarro-Arribas, V. Torra\",\"doi\":\"10.1109/WI-IAT.2010.132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce the problem of providing privacy preserving information for Web indexing, classification, and other information retrieval task. Web pages are represented by a frequency term vector that preserves k-anonymity for all the Web pages. This vector can then be used, for example, to build indexes of classifiers. Our proposal makes use of semantic micro aggregation.\",\"PeriodicalId\":197966,\"journal\":{\"name\":\"Web Intelligence/IAT Workshops\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Web Intelligence/IAT Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT.2010.132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web Intelligence/IAT Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2010.132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文介绍了为Web索引、分类和其他信息检索任务提供隐私保护信息的问题。Web页面由一个频率项向量表示,该向量为所有Web页面保留k-匿名性。然后可以使用这个向量,例如,构建分类器的索引。我们的方案利用了语义微聚合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Privacy Preserving Information Retrieval through Semantic Microaggregation
In this paper we introduce the problem of providing privacy preserving information for Web indexing, classification, and other information retrieval task. Web pages are represented by a frequency term vector that preserves k-anonymity for all the Web pages. This vector can then be used, for example, to build indexes of classifiers. Our proposal makes use of semantic micro aggregation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tracing Strength of Relationships in Social Networks LiSTOMS: A Light-Weighted Self-Tuning Ontology Mapping System Careful Seeding Based on Independent Component Analysis for k-Means Clustering Content Propagation Analysis of E-mail Communications Towards Privacy Preserving Information Retrieval through Semantic Microaggregation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1