TAES:针对VoIP网络钓鱼的端到端安全的双因素身份验证

Dai Hou, Hao Han, Ed Novak
{"title":"TAES:针对VoIP网络钓鱼的端到端安全的双因素身份验证","authors":"Dai Hou, Hao Han, Ed Novak","doi":"10.1109/SEC50012.2020.00049","DOIUrl":null,"url":null,"abstract":"In the current state of communication technology, the abuse of VoIP has led to the emergence of telecommunications fraud. We urgently need an end-to-end identity authentication mechanism to verify the identity of the caller. This paper proposes an end-to-end, dual identity authentication mechanism to solve the problem of telecommunications fraud. Our first technique is to use the Hermes algorithm of data transmission technology on an unknown voice channel to transmit the certificate, thereby authenticating the caller’s phone number. Our second technique uses voice-print recognition technology and a Gaussian mixture model (a general background probabilistic model) to establish a model of the speaker to verify the caller’s voice to ensure the speaker’s identity. Our solution is implemented on the Android platform, and simultaneously tests and evaluates transmission efficiency and speaker recognition. Experiments conducted on Android phones show that the error rate of the voice channel transmission signature certificate is within 3.247 %, and the certificate signature verification mechanism is feasible. The accuracy of the voice-print recognition is 72%, making it effective as a reference for identity authentication.","PeriodicalId":375577,"journal":{"name":"2020 IEEE/ACM Symposium on Edge Computing (SEC)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"TAES: Two-factor Authentication with End-to-End Security against VoIP Phishing\",\"authors\":\"Dai Hou, Hao Han, Ed Novak\",\"doi\":\"10.1109/SEC50012.2020.00049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the current state of communication technology, the abuse of VoIP has led to the emergence of telecommunications fraud. We urgently need an end-to-end identity authentication mechanism to verify the identity of the caller. This paper proposes an end-to-end, dual identity authentication mechanism to solve the problem of telecommunications fraud. Our first technique is to use the Hermes algorithm of data transmission technology on an unknown voice channel to transmit the certificate, thereby authenticating the caller’s phone number. Our second technique uses voice-print recognition technology and a Gaussian mixture model (a general background probabilistic model) to establish a model of the speaker to verify the caller’s voice to ensure the speaker’s identity. Our solution is implemented on the Android platform, and simultaneously tests and evaluates transmission efficiency and speaker recognition. Experiments conducted on Android phones show that the error rate of the voice channel transmission signature certificate is within 3.247 %, and the certificate signature verification mechanism is feasible. The accuracy of the voice-print recognition is 72%, making it effective as a reference for identity authentication.\",\"PeriodicalId\":375577,\"journal\":{\"name\":\"2020 IEEE/ACM Symposium on Edge Computing (SEC)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/ACM Symposium on Edge Computing (SEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEC50012.2020.00049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ACM Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC50012.2020.00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在目前的通信技术状况下,VoIP的滥用导致了电信诈骗的出现。我们迫切需要一个端到端身份验证机制来验证调用者的身份。本文提出了一种端到端的双重身份认证机制来解决电信诈骗问题。我们的第一种技术是在未知的语音通道上使用数据传输技术的Hermes算法传输证书,从而验证呼叫者的电话号码。我们的第二种技术使用声纹识别技术和高斯混合模型(一般背景概率模型)建立说话人的模型来验证呼叫者的声音,以确保说话人的身份。我们的解决方案在Android平台上实现,同时测试和评估传输效率和说话人识别。在Android手机上进行的实验表明,语音通道传输签名证书的错误率在3.247%以内,该证书签名验证机制是可行的。声纹识别准确率达72%,可作为身份认证的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TAES: Two-factor Authentication with End-to-End Security against VoIP Phishing
In the current state of communication technology, the abuse of VoIP has led to the emergence of telecommunications fraud. We urgently need an end-to-end identity authentication mechanism to verify the identity of the caller. This paper proposes an end-to-end, dual identity authentication mechanism to solve the problem of telecommunications fraud. Our first technique is to use the Hermes algorithm of data transmission technology on an unknown voice channel to transmit the certificate, thereby authenticating the caller’s phone number. Our second technique uses voice-print recognition technology and a Gaussian mixture model (a general background probabilistic model) to establish a model of the speaker to verify the caller’s voice to ensure the speaker’s identity. Our solution is implemented on the Android platform, and simultaneously tests and evaluates transmission efficiency and speaker recognition. Experiments conducted on Android phones show that the error rate of the voice channel transmission signature certificate is within 3.247 %, and the certificate signature verification mechanism is feasible. The accuracy of the voice-print recognition is 72%, making it effective as a reference for identity authentication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Position Paper: Towards a Robust Edge-Native Storage System Exploring Decentralized Collaboration in Heterogeneous Edge Training Message from the Program Co-Chairs FareQR: Fast and Reliable Screen-Camera Transfer System for Mobile Devices using QR Code Demo: EdgeVPN.io: Open-source Virtual Private Network for Seamless Edge Computing with Kubernetes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1