M. A. Aslam, Shahzadi Mahnoor, Muhammad Asif Munir, Saman Cheema, Khawaja Humble Hassan, Abdullah Sajid
{"title":"基于主成分分析和自适应k均值聚类的癌胚抗原荧光图像分割与定量分析","authors":"M. A. Aslam, Shahzadi Mahnoor, Muhammad Asif Munir, Saman Cheema, Khawaja Humble Hassan, Abdullah Sajid","doi":"10.1109/ICEPECC57281.2023.10209525","DOIUrl":null,"url":null,"abstract":"Now fluorescent scan images are extensively used for the detection of antigens. The identification and treatment of the tumor is done with the help of these images The speed of detection is the major part for such systems. Although, bulk of research has already been done, segmentation of images is the area still need improvement. Characterization of the images is difficult task due to the diverse nature of the input images. This paper presents a novel method for the segmentation. The segmentation is done using superpixels. In the proposed algorithm the super pixels are studied on the basis of their average value. This value is computed with the help of Principal component analysis and then PCA system is utilized to compute a feature vector corresponding to the each superpixel. The stated method was implemented in MATLAB 2017. Our system integrates a series of algorithms. These algorithms are used for quantitative image analysis.","PeriodicalId":102289,"journal":{"name":"2023 International Conference on Energy, Power, Environment, Control, and Computing (ICEPECC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carcinoembryonic Antigens Segmentation and Quantitative Analysis from Fluorescent Images using Principal Component Analysis and Adaptive K-means Clustering\",\"authors\":\"M. A. Aslam, Shahzadi Mahnoor, Muhammad Asif Munir, Saman Cheema, Khawaja Humble Hassan, Abdullah Sajid\",\"doi\":\"10.1109/ICEPECC57281.2023.10209525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Now fluorescent scan images are extensively used for the detection of antigens. The identification and treatment of the tumor is done with the help of these images The speed of detection is the major part for such systems. Although, bulk of research has already been done, segmentation of images is the area still need improvement. Characterization of the images is difficult task due to the diverse nature of the input images. This paper presents a novel method for the segmentation. The segmentation is done using superpixels. In the proposed algorithm the super pixels are studied on the basis of their average value. This value is computed with the help of Principal component analysis and then PCA system is utilized to compute a feature vector corresponding to the each superpixel. The stated method was implemented in MATLAB 2017. Our system integrates a series of algorithms. These algorithms are used for quantitative image analysis.\",\"PeriodicalId\":102289,\"journal\":{\"name\":\"2023 International Conference on Energy, Power, Environment, Control, and Computing (ICEPECC)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Energy, Power, Environment, Control, and Computing (ICEPECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEPECC57281.2023.10209525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Energy, Power, Environment, Control, and Computing (ICEPECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEPECC57281.2023.10209525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Carcinoembryonic Antigens Segmentation and Quantitative Analysis from Fluorescent Images using Principal Component Analysis and Adaptive K-means Clustering
Now fluorescent scan images are extensively used for the detection of antigens. The identification and treatment of the tumor is done with the help of these images The speed of detection is the major part for such systems. Although, bulk of research has already been done, segmentation of images is the area still need improvement. Characterization of the images is difficult task due to the diverse nature of the input images. This paper presents a novel method for the segmentation. The segmentation is done using superpixels. In the proposed algorithm the super pixels are studied on the basis of their average value. This value is computed with the help of Principal component analysis and then PCA system is utilized to compute a feature vector corresponding to the each superpixel. The stated method was implemented in MATLAB 2017. Our system integrates a series of algorithms. These algorithms are used for quantitative image analysis.