更快,更深入,更容易:从用户空间众包微服务内核故障诊断

Yicheng Pan, Meng Ma, Xinrui Jiang, Ping Wang
{"title":"更快,更深入,更容易:从用户空间众包微服务内核故障诊断","authors":"Yicheng Pan, Meng Ma, Xinrui Jiang, Ping Wang","doi":"10.1145/3460319.3464805","DOIUrl":null,"url":null,"abstract":"With the widespread use of cloud-native architecture, increasing web applications (apps) choose to build on microservices. Simultaneously, troubleshooting becomes full of challenges owing to the high dynamics and complexity of anomaly propagation. Existing diagnostic methods rely heavily on monitoring metrics collected from the kernel side of microservice systems. Without a comprehensive monitoring infrastructure, application owners and even cloud operators cannot resort to these kernel-space solutions. This paper summarizes several insights on operating a top commercial cloud platform. Then, for the first time, we put forward the idea of user-space diagnosis for microservice kernel failures. To this end, we develop a crowdsourcing solution - DyCause, to resolve the asymmetric diagnostic information problem. DyCause deploys on the application side in a distributed manner. Through lightweight API log sharing, apps collect the operational status of kernel services collaboratively and initiate diagnosis on demand. Deploying DyCause is fast and lightweight as we do not have any architectural and functional requirements for the kernel. To reveal more accurate correlations from asymmetric diagnostic information, we design a novel statistical algorithm that can efficiently discover the time-varying causalities between services. This algorithm also helps us build the temporal order of the anomaly propagation. Therefore, by using DyCause, we can obtain more in-depth and interpretable diagnostic clues with limited indicators. We apply and evaluate DyCause on both a simulated test-bed and a real-world cloud system. Experimental results verify that DyCause running in the user-space outperforms several state-of-the-art algorithms running in the kernel on accuracy. Besides, DyCause shows superior advantages in terms of algorithmic efficiency and data sensitivity. Simply put, DyCause produces a significantly better result than other baselines when analyzing much fewer or sparser metrics. To conclude, DyCause is faster to act, deeper in analysis, and easier to deploy.","PeriodicalId":188008,"journal":{"name":"Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Faster, deeper, easier: crowdsourcing diagnosis of microservice kernel failure from user space\",\"authors\":\"Yicheng Pan, Meng Ma, Xinrui Jiang, Ping Wang\",\"doi\":\"10.1145/3460319.3464805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the widespread use of cloud-native architecture, increasing web applications (apps) choose to build on microservices. Simultaneously, troubleshooting becomes full of challenges owing to the high dynamics and complexity of anomaly propagation. Existing diagnostic methods rely heavily on monitoring metrics collected from the kernel side of microservice systems. Without a comprehensive monitoring infrastructure, application owners and even cloud operators cannot resort to these kernel-space solutions. This paper summarizes several insights on operating a top commercial cloud platform. Then, for the first time, we put forward the idea of user-space diagnosis for microservice kernel failures. To this end, we develop a crowdsourcing solution - DyCause, to resolve the asymmetric diagnostic information problem. DyCause deploys on the application side in a distributed manner. Through lightweight API log sharing, apps collect the operational status of kernel services collaboratively and initiate diagnosis on demand. Deploying DyCause is fast and lightweight as we do not have any architectural and functional requirements for the kernel. To reveal more accurate correlations from asymmetric diagnostic information, we design a novel statistical algorithm that can efficiently discover the time-varying causalities between services. This algorithm also helps us build the temporal order of the anomaly propagation. Therefore, by using DyCause, we can obtain more in-depth and interpretable diagnostic clues with limited indicators. We apply and evaluate DyCause on both a simulated test-bed and a real-world cloud system. Experimental results verify that DyCause running in the user-space outperforms several state-of-the-art algorithms running in the kernel on accuracy. Besides, DyCause shows superior advantages in terms of algorithmic efficiency and data sensitivity. Simply put, DyCause produces a significantly better result than other baselines when analyzing much fewer or sparser metrics. To conclude, DyCause is faster to act, deeper in analysis, and easier to deploy.\",\"PeriodicalId\":188008,\"journal\":{\"name\":\"Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3460319.3464805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3460319.3464805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

随着云原生架构的广泛使用,越来越多的web应用程序(应用程序)选择构建在微服务上。同时,由于异常传播的高动态性和复杂性,故障排除也充满了挑战。现有的诊断方法严重依赖于从微服务系统的内核端收集的监控指标。如果没有全面的监控基础设施,应用程序所有者甚至云运营商都无法求助于这些内核空间解决方案。本文总结了运营顶级商业云平台的几点见解。在此基础上,首次提出了微服务内核故障的用户空间诊断思想。为此,我们开发了一个众包解决方案——DyCause,来解决诊断信息不对称的问题。DyCause以分布式方式部署在应用程序端。通过轻量级API日志共享,应用程序协同收集内核服务的运行状态,并根据需要启动诊断。部署DyCause是快速和轻量级的,因为我们对内核没有任何架构和功能需求。为了从非对称诊断信息中揭示更准确的相关性,我们设计了一种新的统计算法,可以有效地发现服务之间的时变因果关系。该算法还可以帮助我们建立异常传播的时间顺序。因此,通过使用DyCause,我们可以在有限的指标下获得更深入和可解释的诊断线索。我们在一个模拟的测试平台和一个真实的云系统上应用并评估了DyCause。实验结果证实,在用户空间中运行的DyCause在准确性上优于内核中运行的几种最先进的算法。此外,DyCause在算法效率和数据敏感性方面都具有优越的优势。简单地说,当分析更少或更稀疏的指标时,DyCause产生的结果明显优于其他基线。总而言之,DyCause行动更快,分析更深入,并且更容易部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Faster, deeper, easier: crowdsourcing diagnosis of microservice kernel failure from user space
With the widespread use of cloud-native architecture, increasing web applications (apps) choose to build on microservices. Simultaneously, troubleshooting becomes full of challenges owing to the high dynamics and complexity of anomaly propagation. Existing diagnostic methods rely heavily on monitoring metrics collected from the kernel side of microservice systems. Without a comprehensive monitoring infrastructure, application owners and even cloud operators cannot resort to these kernel-space solutions. This paper summarizes several insights on operating a top commercial cloud platform. Then, for the first time, we put forward the idea of user-space diagnosis for microservice kernel failures. To this end, we develop a crowdsourcing solution - DyCause, to resolve the asymmetric diagnostic information problem. DyCause deploys on the application side in a distributed manner. Through lightweight API log sharing, apps collect the operational status of kernel services collaboratively and initiate diagnosis on demand. Deploying DyCause is fast and lightweight as we do not have any architectural and functional requirements for the kernel. To reveal more accurate correlations from asymmetric diagnostic information, we design a novel statistical algorithm that can efficiently discover the time-varying causalities between services. This algorithm also helps us build the temporal order of the anomaly propagation. Therefore, by using DyCause, we can obtain more in-depth and interpretable diagnostic clues with limited indicators. We apply and evaluate DyCause on both a simulated test-bed and a real-world cloud system. Experimental results verify that DyCause running in the user-space outperforms several state-of-the-art algorithms running in the kernel on accuracy. Besides, DyCause shows superior advantages in terms of algorithmic efficiency and data sensitivity. Simply put, DyCause produces a significantly better result than other baselines when analyzing much fewer or sparser metrics. To conclude, DyCause is faster to act, deeper in analysis, and easier to deploy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semantic table structure identification in spreadsheets Parema: an unpacking framework for demystifying VM-based Android packers TERA: optimizing stochastic regression tests in machine learning projects Empirically evaluating readily available information for regression test optimization in continuous integration RESTest: automated black-box testing of RESTful web APIs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1