内置块RAM辐射粒子传感器的fpga自适应SEU缓解系统

R. Glein, Bernhard Schmidt, F. Rittner, J. Teich, Daniel Ziener
{"title":"内置块RAM辐射粒子传感器的fpga自适应SEU缓解系统","authors":"R. Glein, Bernhard Schmidt, F. Rittner, J. Teich, Daniel Ziener","doi":"10.1109/FCCM.2014.79","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a self-adaptive FPGA-based, partially reconfigurable system for space missions in order to mitigate Single Event Upsets in the FPGA configuration and fabric. Dynamic reconfiguration is used here for an on-demand replication of modules in dependence of current and changing radiation levels. More precisely, the idea is to trigger a redundancy scheme such as Dual Modular Redundancy or Triple Modular Redundancy in response to a continuously monitored Single Event Upset rate measured inside the on-chip memories itself, e.g., any subset (even used) internal Block RAMs. Depending on the current radiation level, the minimal number of replicas is determined at runtime under the constraint that a required Safety Integrity Level for a module is ensured and configured accordingly. For signal processing applications it is shown that this autonomous adaption to the different solar conditions realizes a resource efficient mitigation. In our case study, we show that it is possible to triplicate the data throughput at the Solar Maximum condition (no flares) compared to a Triple Modular Redundancy implementation of a single module. We also show the decreasing Probability of Failures Per Hour by 2 × 104 at flare-enhanced conditions compared with a non-redundant system.","PeriodicalId":246162,"journal":{"name":"2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"A Self-Adaptive SEU Mitigation System for FPGAs with an Internal Block RAM Radiation Particle Sensor\",\"authors\":\"R. Glein, Bernhard Schmidt, F. Rittner, J. Teich, Daniel Ziener\",\"doi\":\"10.1109/FCCM.2014.79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a self-adaptive FPGA-based, partially reconfigurable system for space missions in order to mitigate Single Event Upsets in the FPGA configuration and fabric. Dynamic reconfiguration is used here for an on-demand replication of modules in dependence of current and changing radiation levels. More precisely, the idea is to trigger a redundancy scheme such as Dual Modular Redundancy or Triple Modular Redundancy in response to a continuously monitored Single Event Upset rate measured inside the on-chip memories itself, e.g., any subset (even used) internal Block RAMs. Depending on the current radiation level, the minimal number of replicas is determined at runtime under the constraint that a required Safety Integrity Level for a module is ensured and configured accordingly. For signal processing applications it is shown that this autonomous adaption to the different solar conditions realizes a resource efficient mitigation. In our case study, we show that it is possible to triplicate the data throughput at the Solar Maximum condition (no flares) compared to a Triple Modular Redundancy implementation of a single module. We also show the decreasing Probability of Failures Per Hour by 2 × 104 at flare-enhanced conditions compared with a non-redundant system.\",\"PeriodicalId\":246162,\"journal\":{\"name\":\"2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCCM.2014.79\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2014.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

在本文中,我们提出了一种基于FPGA的自适应、部分可重构的空间任务系统,以减轻FPGA配置和结构中的单事件干扰。动态重新配置在这里用于依赖于当前和不断变化的辐射水平的模块的按需复制。更准确地说,这个想法是触发一个冗余方案,如双模块冗余或三模块冗余,以响应一个连续监测的单事件打乱率测量片上存储器本身,例如,任何子集(甚至使用)内部块ram。根据当前的辐射级别,在确保模块所需的安全完整性级别并进行相应配置的约束下,在运行时确定副本的最小数量。对于信号处理应用,表明这种对不同太阳条件的自主适应实现了资源高效缓解。在我们的案例研究中,我们表明,与单个模块的三重模块冗余实现相比,在太阳极大期条件下(无耀斑)有可能将数据吞吐量增加三倍。我们还表明,与非冗余系统相比,在耀斑增强条件下每小时的故障概率降低了2 × 104。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Self-Adaptive SEU Mitigation System for FPGAs with an Internal Block RAM Radiation Particle Sensor
In this paper, we propose a self-adaptive FPGA-based, partially reconfigurable system for space missions in order to mitigate Single Event Upsets in the FPGA configuration and fabric. Dynamic reconfiguration is used here for an on-demand replication of modules in dependence of current and changing radiation levels. More precisely, the idea is to trigger a redundancy scheme such as Dual Modular Redundancy or Triple Modular Redundancy in response to a continuously monitored Single Event Upset rate measured inside the on-chip memories itself, e.g., any subset (even used) internal Block RAMs. Depending on the current radiation level, the minimal number of replicas is determined at runtime under the constraint that a required Safety Integrity Level for a module is ensured and configured accordingly. For signal processing applications it is shown that this autonomous adaption to the different solar conditions realizes a resource efficient mitigation. In our case study, we show that it is possible to triplicate the data throughput at the Solar Maximum condition (no flares) compared to a Triple Modular Redundancy implementation of a single module. We also show the decreasing Probability of Failures Per Hour by 2 × 104 at flare-enhanced conditions compared with a non-redundant system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Architectural Approach to Characterizing and Eliminating Sources of Inefficiency in a Soft Processor Design High-Throughput Fixed-Point Object Detection on FPGAs A Hierarchical Memory Architecture with NoC Support for MPSoC on FPGAs System-Level Retiming and Pipelining Harmonica: An FPGA-Based Data Parallel Soft Core
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1