R. Glein, Bernhard Schmidt, F. Rittner, J. Teich, Daniel Ziener
{"title":"内置块RAM辐射粒子传感器的fpga自适应SEU缓解系统","authors":"R. Glein, Bernhard Schmidt, F. Rittner, J. Teich, Daniel Ziener","doi":"10.1109/FCCM.2014.79","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a self-adaptive FPGA-based, partially reconfigurable system for space missions in order to mitigate Single Event Upsets in the FPGA configuration and fabric. Dynamic reconfiguration is used here for an on-demand replication of modules in dependence of current and changing radiation levels. More precisely, the idea is to trigger a redundancy scheme such as Dual Modular Redundancy or Triple Modular Redundancy in response to a continuously monitored Single Event Upset rate measured inside the on-chip memories itself, e.g., any subset (even used) internal Block RAMs. Depending on the current radiation level, the minimal number of replicas is determined at runtime under the constraint that a required Safety Integrity Level for a module is ensured and configured accordingly. For signal processing applications it is shown that this autonomous adaption to the different solar conditions realizes a resource efficient mitigation. In our case study, we show that it is possible to triplicate the data throughput at the Solar Maximum condition (no flares) compared to a Triple Modular Redundancy implementation of a single module. We also show the decreasing Probability of Failures Per Hour by 2 × 104 at flare-enhanced conditions compared with a non-redundant system.","PeriodicalId":246162,"journal":{"name":"2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"A Self-Adaptive SEU Mitigation System for FPGAs with an Internal Block RAM Radiation Particle Sensor\",\"authors\":\"R. Glein, Bernhard Schmidt, F. Rittner, J. Teich, Daniel Ziener\",\"doi\":\"10.1109/FCCM.2014.79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a self-adaptive FPGA-based, partially reconfigurable system for space missions in order to mitigate Single Event Upsets in the FPGA configuration and fabric. Dynamic reconfiguration is used here for an on-demand replication of modules in dependence of current and changing radiation levels. More precisely, the idea is to trigger a redundancy scheme such as Dual Modular Redundancy or Triple Modular Redundancy in response to a continuously monitored Single Event Upset rate measured inside the on-chip memories itself, e.g., any subset (even used) internal Block RAMs. Depending on the current radiation level, the minimal number of replicas is determined at runtime under the constraint that a required Safety Integrity Level for a module is ensured and configured accordingly. For signal processing applications it is shown that this autonomous adaption to the different solar conditions realizes a resource efficient mitigation. In our case study, we show that it is possible to triplicate the data throughput at the Solar Maximum condition (no flares) compared to a Triple Modular Redundancy implementation of a single module. We also show the decreasing Probability of Failures Per Hour by 2 × 104 at flare-enhanced conditions compared with a non-redundant system.\",\"PeriodicalId\":246162,\"journal\":{\"name\":\"2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCCM.2014.79\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2014.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Self-Adaptive SEU Mitigation System for FPGAs with an Internal Block RAM Radiation Particle Sensor
In this paper, we propose a self-adaptive FPGA-based, partially reconfigurable system for space missions in order to mitigate Single Event Upsets in the FPGA configuration and fabric. Dynamic reconfiguration is used here for an on-demand replication of modules in dependence of current and changing radiation levels. More precisely, the idea is to trigger a redundancy scheme such as Dual Modular Redundancy or Triple Modular Redundancy in response to a continuously monitored Single Event Upset rate measured inside the on-chip memories itself, e.g., any subset (even used) internal Block RAMs. Depending on the current radiation level, the minimal number of replicas is determined at runtime under the constraint that a required Safety Integrity Level for a module is ensured and configured accordingly. For signal processing applications it is shown that this autonomous adaption to the different solar conditions realizes a resource efficient mitigation. In our case study, we show that it is possible to triplicate the data throughput at the Solar Maximum condition (no flares) compared to a Triple Modular Redundancy implementation of a single module. We also show the decreasing Probability of Failures Per Hour by 2 × 104 at flare-enhanced conditions compared with a non-redundant system.