基于光照的数据增强鲁棒背景减法

Dimitrios Sakkos, Hubert P. H. Shum, Edmond S. L. Ho
{"title":"基于光照的数据增强鲁棒背景减法","authors":"Dimitrios Sakkos, Hubert P. H. Shum, Edmond S. L. Ho","doi":"10.1109/SKIMA47702.2019.8982527","DOIUrl":null,"url":null,"abstract":"A core challenge in background subtraction (BGS) is handling videos with sudden illumination changes in consecutive frames. In this paper, we tackle the problem from a data point-of-view using data augmentation. Our method performs data augmentation that not only creates endless data on the fly, but also features semantic transformations of illumination which enhance the generalisation of the model. It successfully simulates flashes and shadows by applying the Euclidean distance transform over a binary mask generated randomly. Such data allows us to effectively train an illumination-invariant deep learning model for BGS. Experimental results demonstrate the contribution of the synthetics in the ability of the models to perform BGS even when significant illumination changes take place.","PeriodicalId":245523,"journal":{"name":"2019 13th International Conference on Software, Knowledge, Information Management and Applications (SKIMA)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Illumination-Based Data Augmentation for Robust Background Subtraction\",\"authors\":\"Dimitrios Sakkos, Hubert P. H. Shum, Edmond S. L. Ho\",\"doi\":\"10.1109/SKIMA47702.2019.8982527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A core challenge in background subtraction (BGS) is handling videos with sudden illumination changes in consecutive frames. In this paper, we tackle the problem from a data point-of-view using data augmentation. Our method performs data augmentation that not only creates endless data on the fly, but also features semantic transformations of illumination which enhance the generalisation of the model. It successfully simulates flashes and shadows by applying the Euclidean distance transform over a binary mask generated randomly. Such data allows us to effectively train an illumination-invariant deep learning model for BGS. Experimental results demonstrate the contribution of the synthetics in the ability of the models to perform BGS even when significant illumination changes take place.\",\"PeriodicalId\":245523,\"journal\":{\"name\":\"2019 13th International Conference on Software, Knowledge, Information Management and Applications (SKIMA)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 13th International Conference on Software, Knowledge, Information Management and Applications (SKIMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SKIMA47702.2019.8982527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 13th International Conference on Software, Knowledge, Information Management and Applications (SKIMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SKIMA47702.2019.8982527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

背景减法(BGS)的一个核心挑战是处理连续帧中光照突然变化的视频。在本文中,我们使用数据增强从数据的角度来解决这个问题。我们的方法执行数据增强,不仅在飞行中创建无尽的数据,而且还具有光照的语义转换,增强了模型的泛化。通过对随机生成的二值掩模进行欧氏距离变换,成功地模拟了闪光和阴影。这些数据使我们能够有效地训练BGS的光照不变深度学习模型。实验结果表明,即使在光照发生显著变化的情况下,合成材料对模型进行BGS的能力也有贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Illumination-Based Data Augmentation for Robust Background Subtraction
A core challenge in background subtraction (BGS) is handling videos with sudden illumination changes in consecutive frames. In this paper, we tackle the problem from a data point-of-view using data augmentation. Our method performs data augmentation that not only creates endless data on the fly, but also features semantic transformations of illumination which enhance the generalisation of the model. It successfully simulates flashes and shadows by applying the Euclidean distance transform over a binary mask generated randomly. Such data allows us to effectively train an illumination-invariant deep learning model for BGS. Experimental results demonstrate the contribution of the synthetics in the ability of the models to perform BGS even when significant illumination changes take place.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Under-Sampling Method with Support Vectors in Multi-class Imbalanced Data Classification Big Data with Decision Tree Induction Partitioning based incremental marginalization algorithm for anonymizing missing data streams A Deep Learning Approach to Tumour Identification in Fresh Frozen Tissues An Efficient Cryptosystem based on the Logistic-Chebyshev Map
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1