超级计算机宽限期策略的博弈论方法

Fei He, N. Rao, Chris Y. T. Ma
{"title":"超级计算机宽限期策略的博弈论方法","authors":"Fei He, N. Rao, Chris Y. T. Ma","doi":"10.23919/fusion49465.2021.9626952","DOIUrl":null,"url":null,"abstract":"Job scheduling at supercomputing facilities is important for achieving high utilization of these valuable resources while ensuring effective execution of jobs submitted by users. The jobs are scheduled according to their specified resource demands such as expected job completion times, and the available resources based on allocations. Jobs that overrun their allocated times are terminated, for example, after a grace-period. It is non-trivial and often very complex for users to accurately estimate the completion times of their jobs, and consequently they face a dilemma: underestimate the job time to have a higher priority and risk job termination due to overrun, or overestimate it to ensure its completion and risk its delayed execution. In this paper, we investigate whether providing grace-period can benefit facility performance by developing a game- theoretic model between a facility provider and multiple users for a simplified scheduling scenario based on job execution times. We present closed-form expressions for the provider’s and user’s best-response strategies to maximize their respective utility functions. We describe conditions under which offering a grace-period is advantageous to both facility provider and users by deriving the Nash equilibrium of the game.","PeriodicalId":226850,"journal":{"name":"2021 IEEE 24th International Conference on Information Fusion (FUSION)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Game-Theoretic Approach for Grace-Period Policy in Supercomputers\",\"authors\":\"Fei He, N. Rao, Chris Y. T. Ma\",\"doi\":\"10.23919/fusion49465.2021.9626952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Job scheduling at supercomputing facilities is important for achieving high utilization of these valuable resources while ensuring effective execution of jobs submitted by users. The jobs are scheduled according to their specified resource demands such as expected job completion times, and the available resources based on allocations. Jobs that overrun their allocated times are terminated, for example, after a grace-period. It is non-trivial and often very complex for users to accurately estimate the completion times of their jobs, and consequently they face a dilemma: underestimate the job time to have a higher priority and risk job termination due to overrun, or overestimate it to ensure its completion and risk its delayed execution. In this paper, we investigate whether providing grace-period can benefit facility performance by developing a game- theoretic model between a facility provider and multiple users for a simplified scheduling scenario based on job execution times. We present closed-form expressions for the provider’s and user’s best-response strategies to maximize their respective utility functions. We describe conditions under which offering a grace-period is advantageous to both facility provider and users by deriving the Nash equilibrium of the game.\",\"PeriodicalId\":226850,\"journal\":{\"name\":\"2021 IEEE 24th International Conference on Information Fusion (FUSION)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 24th International Conference on Information Fusion (FUSION)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/fusion49465.2021.9626952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 24th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion49465.2021.9626952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

超级计算设施中的作业调度对于实现这些宝贵资源的高利用率,同时确保有效执行用户提交的作业非常重要。作业是根据其指定的资源需求(如预期作业完成时间和基于分配的可用资源)进行调度的。例如,超出分配时间的作业将在宽限期后终止。对于用户来说,准确地估计作业的完成时间是一件非常重要且非常复杂的事情,因此他们面临着一个两难的境地:低估作业时间以获得更高的优先级,并有因超时而终止作业的风险,或者高估作业时间以确保其完成并冒延迟执行的风险。在本文中,我们通过建立一个基于作业执行时间的简化调度场景的设施提供者和多个用户之间的博弈论模型来研究提供宽限期是否可以提高设施性能。我们提出了提供者和用户的最佳响应策略的封闭表达式,以最大化其各自的效用函数。我们通过推导博弈的纳什均衡来描述提供宽限期对设施提供者和用户都有利的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Game-Theoretic Approach for Grace-Period Policy in Supercomputers
Job scheduling at supercomputing facilities is important for achieving high utilization of these valuable resources while ensuring effective execution of jobs submitted by users. The jobs are scheduled according to their specified resource demands such as expected job completion times, and the available resources based on allocations. Jobs that overrun their allocated times are terminated, for example, after a grace-period. It is non-trivial and often very complex for users to accurately estimate the completion times of their jobs, and consequently they face a dilemma: underestimate the job time to have a higher priority and risk job termination due to overrun, or overestimate it to ensure its completion and risk its delayed execution. In this paper, we investigate whether providing grace-period can benefit facility performance by developing a game- theoretic model between a facility provider and multiple users for a simplified scheduling scenario based on job execution times. We present closed-form expressions for the provider’s and user’s best-response strategies to maximize their respective utility functions. We describe conditions under which offering a grace-period is advantageous to both facility provider and users by deriving the Nash equilibrium of the game.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of Georegistration Accuracy on Wide Area Motion Imagery Object Detection and Tracking Posterior Cramér-Rao Bounds for Tracking Intermittently Visible Targets in Clutter Monocular 3D Multi-Object Tracking with an EKF Approach for Long-Term Stable Tracks Resilient Collaborative All-source Navigation Symmetric Star-convex Shape Tracking With Wishart Filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1