用短阻塞子句加速全sat计算

Yueling Zhang, G. Pu, Jun Sun
{"title":"用短阻塞子句加速全sat计算","authors":"Yueling Zhang, G. Pu, Jun Sun","doi":"10.1145/3324884.3416569","DOIUrl":null,"url":null,"abstract":"The All-SAT (All-SATisfiable) problem focuses on finding all satisfiable assignments of a given propositional formula, whose applications include model checking, automata construction, and logic minimization. A typical ALL-SAT solver is normally based on iteratively computing satisfiable assignments of the given formula. In this work, we introduce BASOLVER, a backbone-based All-SAT solver for propositional formulas. Compared to the existing approaches, BASOLVER generates shorter blocking clauses by removing backbone variables from the partial assignments and the blocking clauses. We compare BASOLVER with 4 existing ALL-SAT solvers, namely MBLOCKING, BC, BDD, and NBC. Experimental results indicate that although finding all the backbone variables consumes additional computing time, BASOLVER is still more efficient than the existing solvers because of the shorter blocking clauses and the backbone variables used in it. With the 608 formulas, BASOLVER solves the largest amount of formulas (86), which is 22%, 36%, 68%, 86% more formulas than MBLOCKING, BC, NBC, and BDD respectively. For the formulas that are both solved by BASOLVER and the other solvers, BASOLVER uses 88.4% less computing time on average than the other solvers. For the 215 formulas which first 1000 satisfiable assignments are found by at least one of the solvers, BASOLVER uses 180% less computing time on average than the other solvers.","PeriodicalId":106337,"journal":{"name":"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Accelerating All-SAT Computation with Short Blocking Clauses\",\"authors\":\"Yueling Zhang, G. Pu, Jun Sun\",\"doi\":\"10.1145/3324884.3416569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The All-SAT (All-SATisfiable) problem focuses on finding all satisfiable assignments of a given propositional formula, whose applications include model checking, automata construction, and logic minimization. A typical ALL-SAT solver is normally based on iteratively computing satisfiable assignments of the given formula. In this work, we introduce BASOLVER, a backbone-based All-SAT solver for propositional formulas. Compared to the existing approaches, BASOLVER generates shorter blocking clauses by removing backbone variables from the partial assignments and the blocking clauses. We compare BASOLVER with 4 existing ALL-SAT solvers, namely MBLOCKING, BC, BDD, and NBC. Experimental results indicate that although finding all the backbone variables consumes additional computing time, BASOLVER is still more efficient than the existing solvers because of the shorter blocking clauses and the backbone variables used in it. With the 608 formulas, BASOLVER solves the largest amount of formulas (86), which is 22%, 36%, 68%, 86% more formulas than MBLOCKING, BC, NBC, and BDD respectively. For the formulas that are both solved by BASOLVER and the other solvers, BASOLVER uses 88.4% less computing time on average than the other solvers. For the 215 formulas which first 1000 satisfiable assignments are found by at least one of the solvers, BASOLVER uses 180% less computing time on average than the other solvers.\",\"PeriodicalId\":106337,\"journal\":{\"name\":\"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3324884.3416569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3324884.3416569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

all - sat (all - satisfiable)问题的重点是寻找给定命题公式的所有可满足的赋值,其应用包括模型检验、自动机构造和逻辑最小化。典型的ALL-SAT求解通常是基于对给定公式的可满足赋值的迭代计算。在这项工作中,我们介绍了BASOLVER,一个基于主干的全sat命题公式求解器。与现有方法相比,BASOLVER通过从部分赋值和阻塞子句中删除主干变量来生成更短的阻塞子句。我们将BASOLVER与现有的4种ALL-SAT求解器进行比较,即MBLOCKING、BC、BDD和NBC。实验结果表明,尽管寻找所有的骨干变量会消耗额外的计算时间,但由于BASOLVER的阻塞子句更短,并且使用了骨干变量,因此仍然比现有的求解器效率更高。在608个公式中,BASOLVER解决的公式最多(86个),比MBLOCKING、BC、NBC和BDD分别多22%、36%、68%和86%。对于同时使用BASOLVER和其他求解器求解的公式,BASOLVER比其他求解器平均节省了88.4%的计算时间。对于至少有一个求解器找到前1000个可满意赋值的215个公式,BASOLVER比其他求解器平均节省180%的计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerating All-SAT Computation with Short Blocking Clauses
The All-SAT (All-SATisfiable) problem focuses on finding all satisfiable assignments of a given propositional formula, whose applications include model checking, automata construction, and logic minimization. A typical ALL-SAT solver is normally based on iteratively computing satisfiable assignments of the given formula. In this work, we introduce BASOLVER, a backbone-based All-SAT solver for propositional formulas. Compared to the existing approaches, BASOLVER generates shorter blocking clauses by removing backbone variables from the partial assignments and the blocking clauses. We compare BASOLVER with 4 existing ALL-SAT solvers, namely MBLOCKING, BC, BDD, and NBC. Experimental results indicate that although finding all the backbone variables consumes additional computing time, BASOLVER is still more efficient than the existing solvers because of the shorter blocking clauses and the backbone variables used in it. With the 608 formulas, BASOLVER solves the largest amount of formulas (86), which is 22%, 36%, 68%, 86% more formulas than MBLOCKING, BC, NBC, and BDD respectively. For the formulas that are both solved by BASOLVER and the other solvers, BASOLVER uses 88.4% less computing time on average than the other solvers. For the 215 formulas which first 1000 satisfiable assignments are found by at least one of the solvers, BASOLVER uses 180% less computing time on average than the other solvers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Generating Thread-Safe Classes Automatically Anti-patterns for Java Automated Program Repair Tools Automating Just-In-Time Comment Updating Synthesizing Smart Solving Strategy for Symbolic Execution Identifying and Describing Information Seeking Tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1