{"title":"最大抽样","authors":"Jon Lee","doi":"10.1002/9780470057339.VAM008","DOIUrl":null,"url":null,"abstract":"The goal of maximum entropy sampling is to choose a most informative subset of s random variables from a set of n random variables, subject to side constraints. A typical side constraint might be a budget restriction, where one has a cost for observing each random variable. Other possibilities include logical constraints (e.g. multiple choice or precedence constraints). In many situations, one can assume that the random variables are Gaussian, or that they can be suitably transformed.","PeriodicalId":146141,"journal":{"name":"Springer Series in Operations Research and Financial Engineering","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Maximum-Entropy Sampling\",\"authors\":\"Jon Lee\",\"doi\":\"10.1002/9780470057339.VAM008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of maximum entropy sampling is to choose a most informative subset of s random variables from a set of n random variables, subject to side constraints. A typical side constraint might be a budget restriction, where one has a cost for observing each random variable. Other possibilities include logical constraints (e.g. multiple choice or precedence constraints). In many situations, one can assume that the random variables are Gaussian, or that they can be suitably transformed.\",\"PeriodicalId\":146141,\"journal\":{\"name\":\"Springer Series in Operations Research and Financial Engineering\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Springer Series in Operations Research and Financial Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/9780470057339.VAM008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Springer Series in Operations Research and Financial Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9780470057339.VAM008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

最大熵抽样的目标是从n个随机变量的集合中选择最具信息量的s个随机变量子集,受侧约束。典型的侧约束可能是预算限制,其中观察每个随机变量都有成本。其他可能性包括逻辑约束(例如,多项选择或优先约束)。在许多情况下,人们可以假设随机变量是高斯的,或者它们可以适当地变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Maximum-Entropy Sampling
The goal of maximum entropy sampling is to choose a most informative subset of s random variables from a set of n random variables, subject to side constraints. A typical side constraint might be a budget restriction, where one has a cost for observing each random variable. Other possibilities include logical constraints (e.g. multiple choice or precedence constraints). In many situations, one can assume that the random variables are Gaussian, or that they can be suitably transformed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
期刊最新文献
Many Agent Games in Socio-economic Systems: Corruption, Inspection, Coalition Building, Network Growth, Security Multivariate Extreme Value Theory and D-Norms Maximum-Entropy Sampling Convex Analysis and Beyond An Optimization Primer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1