加密货币收益的因子模型

Daniele Bianchi, M. Babiak
{"title":"加密货币收益的因子模型","authors":"Daniele Bianchi, M. Babiak","doi":"10.2139/ssrn.3935934","DOIUrl":null,"url":null,"abstract":"We investigate the dynamics of daily realised returns and risk premiums for a large cross-section of cryptocurrency pairs through the lens of an Instrumented Principal Component Analysis (IPCA) (see Kelly et al. 2019). We show that a model with three latent factors and time-varying factor loadings significantly outperforms a benchmark model with observable risk factors: the total (predictive) R","PeriodicalId":389424,"journal":{"name":"FinPlanRN: Other Investments (Topic)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Factor Model for Cryptocurrency Returns\",\"authors\":\"Daniele Bianchi, M. Babiak\",\"doi\":\"10.2139/ssrn.3935934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the dynamics of daily realised returns and risk premiums for a large cross-section of cryptocurrency pairs through the lens of an Instrumented Principal Component Analysis (IPCA) (see Kelly et al. 2019). We show that a model with three latent factors and time-varying factor loadings significantly outperforms a benchmark model with observable risk factors: the total (predictive) R\",\"PeriodicalId\":389424,\"journal\":{\"name\":\"FinPlanRN: Other Investments (Topic)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FinPlanRN: Other Investments (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3935934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FinPlanRN: Other Investments (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3935934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们通过仪器主成分分析(IPCA)的视角,研究了大量加密货币对的每日实现回报和风险溢价的动态(见Kelly et al. 2019)。我们表明,具有三个潜在因素和时变因素负载的模型显着优于具有可观察风险因素的基准模型:总(预测)R
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Factor Model for Cryptocurrency Returns
We investigate the dynamics of daily realised returns and risk premiums for a large cross-section of cryptocurrency pairs through the lens of an Instrumented Principal Component Analysis (IPCA) (see Kelly et al. 2019). We show that a model with three latent factors and time-varying factor loadings significantly outperforms a benchmark model with observable risk factors: the total (predictive) R
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Factor Model for Cryptocurrency Returns Stock Price Level Effect A Dynamic Measure of Intentional Herd Behavior Causing Excess Volatility in U.S. Stock Markets (미국 주식시장의 초과변동성과 의도적 무리행동의 동태적 측정) Financial Intermediary Leverage, Volatility, and the Cross-Section of Asset Returns Parimutuel Betting Markets: Racetracks and Lotteries Revisited
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1