基于超分辨率空间光谱方差的水下目标分类器

Xuan Li, Xiaochuan Ma
{"title":"基于超分辨率空间光谱方差的水下目标分类器","authors":"Xuan Li, Xiaochuan Ma","doi":"10.1109/OCEANSE.2019.8867292","DOIUrl":null,"url":null,"abstract":"In underwater environment, the low speed target recognition has been a challenge problem. A design for underwater objects identification is suggested in this paper. The construction can be used in harbor surveillance and ocean environment inspection. Utilizing super-resolution beamforming, the distinctions between the low-speed object (such as buoy or low speed AUV) and the beacon can be observed in spatial-temporal spectrum. Corresponding to the features of power differences and spatial spectrum variance in vertical direction, the low-speed object can be separated from beacon. The data from lake experiment is dealt with and illustrate the method.","PeriodicalId":375793,"journal":{"name":"OCEANS 2019 - Marseille","volume":"167 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Underwater objects classifier based on super-resolution spatial spectrum variance\",\"authors\":\"Xuan Li, Xiaochuan Ma\",\"doi\":\"10.1109/OCEANSE.2019.8867292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In underwater environment, the low speed target recognition has been a challenge problem. A design for underwater objects identification is suggested in this paper. The construction can be used in harbor surveillance and ocean environment inspection. Utilizing super-resolution beamforming, the distinctions between the low-speed object (such as buoy or low speed AUV) and the beacon can be observed in spatial-temporal spectrum. Corresponding to the features of power differences and spatial spectrum variance in vertical direction, the low-speed object can be separated from beacon. The data from lake experiment is dealt with and illustrate the method.\",\"PeriodicalId\":375793,\"journal\":{\"name\":\"OCEANS 2019 - Marseille\",\"volume\":\"167 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OCEANS 2019 - Marseille\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANSE.2019.8867292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2019 - Marseille","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSE.2019.8867292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在水下环境下,低速目标识别一直是一个具有挑战性的问题。本文提出了一种水下目标识别的设计方案。该结构可用于港口监视和海洋环境检查。利用超分辨率波束形成技术,可以在时空光谱上观察低速目标(如浮标或低速AUV)与信标之间的区别。根据信标在垂直方向上的功率差和空间频谱方差特征,可以将低速目标与信标分离。以湖泊试验数据为例,说明了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Underwater objects classifier based on super-resolution spatial spectrum variance
In underwater environment, the low speed target recognition has been a challenge problem. A design for underwater objects identification is suggested in this paper. The construction can be used in harbor surveillance and ocean environment inspection. Utilizing super-resolution beamforming, the distinctions between the low-speed object (such as buoy or low speed AUV) and the beacon can be observed in spatial-temporal spectrum. Corresponding to the features of power differences and spatial spectrum variance in vertical direction, the low-speed object can be separated from beacon. The data from lake experiment is dealt with and illustrate the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Data-driven Vessel Motion Model for Offshore Access Forecasting Decentralized System Intelligence in Data Driven Networks for Shipping Industrial Applications: Digital Models to Blockchain Technologies Robust 3D Shape Classification Method using Simulated Multi View Sonar Images and Convolutional Nueral Network Weighted Grid Partitioning for Panel-Based Bathymetric SLAM Fishing Spot Detection Using Sea Water Temperature Pattern by Nonlinear Clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1