基于上下文的CD-DNN-HMM连续语音关键字识别

Hinda Dridi, K. Ouni
{"title":"基于上下文的CD-DNN-HMM连续语音关键字识别","authors":"Hinda Dridi, K. Ouni","doi":"10.1109/ATSIP.2017.8075541","DOIUrl":null,"url":null,"abstract":"In this paper we describe a systematic procedure to implement two-stage based keywords spotting system (KWS). In first stage, a phonetic decoding of continuous speech is obtained using a CD-DNN-HMM model built with the Kaldi toolkit. In second stage, these results of phonetic transcriptions will serve to construct a system to search the keywords embedded in continuous speech using the classification and regression tree (CART) implemented with the software MATLAB. The work will be done using the TIMIT data base.","PeriodicalId":259951,"journal":{"name":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hybrid context dependent CD-DNN-HMM keywords spotting on continuous speech\",\"authors\":\"Hinda Dridi, K. Ouni\",\"doi\":\"10.1109/ATSIP.2017.8075541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe a systematic procedure to implement two-stage based keywords spotting system (KWS). In first stage, a phonetic decoding of continuous speech is obtained using a CD-DNN-HMM model built with the Kaldi toolkit. In second stage, these results of phonetic transcriptions will serve to construct a system to search the keywords embedded in continuous speech using the classification and regression tree (CART) implemented with the software MATLAB. The work will be done using the TIMIT data base.\",\"PeriodicalId\":259951,\"journal\":{\"name\":\"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATSIP.2017.8075541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP.2017.8075541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文描述了一个基于两阶段的关键词识别系统的系统实现过程。首先,利用Kaldi工具箱构建CD-DNN-HMM模型,对连续语音进行语音解码。在第二阶段,这些语音转录结果将用于构建一个系统,使用MATLAB软件实现的分类与回归树(CART)来搜索嵌入在连续语音中的关键词。这项工作将使用TIMIT数据库完成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid context dependent CD-DNN-HMM keywords spotting on continuous speech
In this paper we describe a systematic procedure to implement two-stage based keywords spotting system (KWS). In first stage, a phonetic decoding of continuous speech is obtained using a CD-DNN-HMM model built with the Kaldi toolkit. In second stage, these results of phonetic transcriptions will serve to construct a system to search the keywords embedded in continuous speech using the classification and regression tree (CART) implemented with the software MATLAB. The work will be done using the TIMIT data base.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Speckle noise reduction in digital speckle pattern interferometry using Riesz wavelets transform A new GLBSIF descriptor for face recognition in the uncontrolled environments Saliency attention and sift keypoints combination for automatic target recognition on MSTAR dataset A comparative study of interworking methods among differents rats in 5G context Diagnosis of osteoporosis disease from bone X-ray images with stacked sparse autoencoder and SVM classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1