使用自定义指令方法加速Viterbi算法

Waqar Ahmad, Imran Hafeez Abbassi, Usman Sanwal, H. Mahmood
{"title":"使用自定义指令方法加速Viterbi算法","authors":"Waqar Ahmad, Imran Hafeez Abbassi, Usman Sanwal, H. Mahmood","doi":"10.1109/MESA.2018.8449144","DOIUrl":null,"url":null,"abstract":"In recent years, the decoding algorithms in communication networks are becoming increasingly complex aiming to achieve high reliability in correctly decoding received messages. These decoding algorithms involve computationally complex operations requiring high performance computing hardware, which are generally expensive. A cost-effective solution is to enhance the Instruction Set Architecture (ISA) of the processors by creating new custom instructions for the computational parts of the decoding algorithms. In this paper, we propose to utilize the custom instruction approach to efficiently implement the widely used Viterbi decoding algorithm by adding the assembly language instructions to the ISA of DLX, PicoJava II and NIOS II processors, which represent RISC, stack and FPGA-based soft-core processor architectures, respectively. By using the custom instruction approach, the execution time of the Viterbi algorithm is significantly improved by approximately 3 times for DLX and PicoJava II, and by 2 times for NIOS II.","PeriodicalId":138936,"journal":{"name":"2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating Viterbi Algorithm using Custom Instruction Approach\",\"authors\":\"Waqar Ahmad, Imran Hafeez Abbassi, Usman Sanwal, H. Mahmood\",\"doi\":\"10.1109/MESA.2018.8449144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the decoding algorithms in communication networks are becoming increasingly complex aiming to achieve high reliability in correctly decoding received messages. These decoding algorithms involve computationally complex operations requiring high performance computing hardware, which are generally expensive. A cost-effective solution is to enhance the Instruction Set Architecture (ISA) of the processors by creating new custom instructions for the computational parts of the decoding algorithms. In this paper, we propose to utilize the custom instruction approach to efficiently implement the widely used Viterbi decoding algorithm by adding the assembly language instructions to the ISA of DLX, PicoJava II and NIOS II processors, which represent RISC, stack and FPGA-based soft-core processor architectures, respectively. By using the custom instruction approach, the execution time of the Viterbi algorithm is significantly improved by approximately 3 times for DLX and PicoJava II, and by 2 times for NIOS II.\",\"PeriodicalId\":138936,\"journal\":{\"name\":\"2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MESA.2018.8449144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MESA.2018.8449144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,通信网络中的译码算法越来越复杂,目的是实现高可靠性的正确译码。这些解码算法涉及计算复杂的操作,需要高性能的计算硬件,这通常是昂贵的。一种经济有效的解决方案是通过为解码算法的计算部分创建新的自定义指令来增强处理器的指令集架构(ISA)。在本文中,我们提出利用自定义指令方法,通过将汇编语言指令添加到DLX、PicoJava II和NIOS II处理器的ISA中,从而有效地实现广泛使用的Viterbi解码算法,这三种处理器分别代表基于RISC、堆栈和fpga的软核处理器架构。通过使用自定义指令方法,Viterbi算法的执行时间在DLX和PicoJava II中显著提高了约3倍,在NIOS II中提高了2倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerating Viterbi Algorithm using Custom Instruction Approach
In recent years, the decoding algorithms in communication networks are becoming increasingly complex aiming to achieve high reliability in correctly decoding received messages. These decoding algorithms involve computationally complex operations requiring high performance computing hardware, which are generally expensive. A cost-effective solution is to enhance the Instruction Set Architecture (ISA) of the processors by creating new custom instructions for the computational parts of the decoding algorithms. In this paper, we propose to utilize the custom instruction approach to efficiently implement the widely used Viterbi decoding algorithm by adding the assembly language instructions to the ISA of DLX, PicoJava II and NIOS II processors, which represent RISC, stack and FPGA-based soft-core processor architectures, respectively. By using the custom instruction approach, the execution time of the Viterbi algorithm is significantly improved by approximately 3 times for DLX and PicoJava II, and by 2 times for NIOS II.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The sensing technology of applying the acoustic emission sensor to the grinding wheel loading phenomenon Lateral control approach of powered parafoils combining wind feedforward compensation with active disturbance rejection control Effects of DAC interpolation on the dynamics of a high speed linear actuator Wearable Device to Record Hand Motions based on EMG and Visual Information A Smooth Traction Control Design for Two-Wheeled electric vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1