利用遗传规划挖掘多种可理解分类规则

K. Tan, A. Tay, Tong-heng Lee, C. M. Heng
{"title":"利用遗传规划挖掘多种可理解分类规则","authors":"K. Tan, A. Tay, Tong-heng Lee, C. M. Heng","doi":"10.1109/CEC.2002.1004431","DOIUrl":null,"url":null,"abstract":"Genetic programming (GP) has emerged as a promising approach to deal with the classification task in data mining. This paper extends the tree representation of GP to evolve multiple comprehensible IF-THEN classification rules. We introduce a concept mapping technique for the fitness evaluation of individuals. A covering algorithm that employs an artificial immune system-like memory vector is utilized to produce multiple rules as well as to remove redundant rules. The proposed GP classifier is validated on nine benchmark data sets, and the simulation results confirm the viability and effectiveness of the GP approach for solving data mining problems in a wide spectrum of application domains.","PeriodicalId":184547,"journal":{"name":"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":"{\"title\":\"Mining multiple comprehensible classification rules using genetic programming\",\"authors\":\"K. Tan, A. Tay, Tong-heng Lee, C. M. Heng\",\"doi\":\"10.1109/CEC.2002.1004431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genetic programming (GP) has emerged as a promising approach to deal with the classification task in data mining. This paper extends the tree representation of GP to evolve multiple comprehensible IF-THEN classification rules. We introduce a concept mapping technique for the fitness evaluation of individuals. A covering algorithm that employs an artificial immune system-like memory vector is utilized to produce multiple rules as well as to remove redundant rules. The proposed GP classifier is validated on nine benchmark data sets, and the simulation results confirm the viability and effectiveness of the GP approach for solving data mining problems in a wide spectrum of application domains.\",\"PeriodicalId\":184547,\"journal\":{\"name\":\"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2002.1004431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2002.1004431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

摘要

遗传规划(GP)已成为处理数据挖掘分类任务的一种很有前途的方法。本文扩展了GP的树表示,以演化出多个可理解的IF-THEN分类规则。我们引入了一种概念映射技术来评估个体的适合度。利用人工免疫系统样记忆载体的覆盖算法生成多规则,去除冗余规则。在9个基准数据集上对所提出的GP分类器进行了验证,仿真结果证实了GP方法在广泛应用领域中解决数据挖掘问题的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mining multiple comprehensible classification rules using genetic programming
Genetic programming (GP) has emerged as a promising approach to deal with the classification task in data mining. This paper extends the tree representation of GP to evolve multiple comprehensible IF-THEN classification rules. We introduce a concept mapping technique for the fitness evaluation of individuals. A covering algorithm that employs an artificial immune system-like memory vector is utilized to produce multiple rules as well as to remove redundant rules. The proposed GP classifier is validated on nine benchmark data sets, and the simulation results confirm the viability and effectiveness of the GP approach for solving data mining problems in a wide spectrum of application domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of FPGA based adaptive image enhancement filter system using genetic algorithms Intelligent predictive control of a power plant with evolutionary programming optimizer and neuro-fuzzy identifier Blocked stochastic sampling versus Estimation of Distribution Algorithms Distinguishing adaptive from non-adaptive evolution using Ashby's law of requisite variety An artificial immune network for multimodal function optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1