MulKINet:用于准确和快速识别翻唱歌曲的多阶段键不变卷积神经网络

Chengdi Cao, Weiqiang Zhang
{"title":"MulKINet:用于准确和快速识别翻唱歌曲的多阶段键不变卷积神经网络","authors":"Chengdi Cao, Weiqiang Zhang","doi":"10.1109/ISSPIT51521.2020.9408993","DOIUrl":null,"url":null,"abstract":"Cover song identification (CSI) is a challenging task in the music information retrieval (MIR) community. The employment of convolutional neural networks (CNN) have significantly improved the performance of CSI systems, especially CNN designed to be invariant against key transpositions. In this paper, we propose MulKINet, a multi-stage CNN architecture that preserve the property of key invariance while its representational ability is substantially enhanced. Combined with three options for building blocks, channel and temporal attention mechanism, we present an accurate and fast CSI system.","PeriodicalId":111385,"journal":{"name":"2020 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MulKINet: Multi-Stage Key-Invariant Convolutional Neural Networks for Accurate and Fast Cover Song Identification\",\"authors\":\"Chengdi Cao, Weiqiang Zhang\",\"doi\":\"10.1109/ISSPIT51521.2020.9408993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cover song identification (CSI) is a challenging task in the music information retrieval (MIR) community. The employment of convolutional neural networks (CNN) have significantly improved the performance of CSI systems, especially CNN designed to be invariant against key transpositions. In this paper, we propose MulKINet, a multi-stage CNN architecture that preserve the property of key invariance while its representational ability is substantially enhanced. Combined with three options for building blocks, channel and temporal attention mechanism, we present an accurate and fast CSI system.\",\"PeriodicalId\":111385,\"journal\":{\"name\":\"2020 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT51521.2020.9408993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT51521.2020.9408993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

翻唱歌曲识别(CSI)是音乐信息检索(MIR)界的一项具有挑战性的任务。卷积神经网络(CNN)的使用显著提高了CSI系统的性能,特别是CNN设计成对关键换位不变。在本文中,我们提出了MulKINet,这是一种多阶段的CNN架构,在保持关键不变性的同时,其表示能力得到了极大的增强。结合构建模块、通道和时间注意机制三种选择,我们提出了一个准确、快速的CSI系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MulKINet: Multi-Stage Key-Invariant Convolutional Neural Networks for Accurate and Fast Cover Song Identification
Cover song identification (CSI) is a challenging task in the music information retrieval (MIR) community. The employment of convolutional neural networks (CNN) have significantly improved the performance of CSI systems, especially CNN designed to be invariant against key transpositions. In this paper, we propose MulKINet, a multi-stage CNN architecture that preserve the property of key invariance while its representational ability is substantially enhanced. Combined with three options for building blocks, channel and temporal attention mechanism, we present an accurate and fast CSI system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance study of CFD Pressure-based solver on HPC Efficient Topology of Multilevel Clustering Algorithm for Underwater Sensor Networks Machine learning applied to diabetes dataset using Quantum versus Classical computation DOAV Estimation Using L-Shaped Antenna Array Configuration Sentiment analysis using an ensemble approach of BiGRU model: A case study of AMIS tweets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1