面向多核数据存储的并发学习索引

Zhaoguo Wang, Haibo Chen, Youyun Wang, Chuzhe Tang, Huan Wang
{"title":"面向多核数据存储的并发学习索引","authors":"Zhaoguo Wang, Haibo Chen, Youyun Wang, Chuzhe Tang, Huan Wang","doi":"10.1145/3478289","DOIUrl":null,"url":null,"abstract":"We present XIndex, which is a concurrent index library and designed for fast queries. It includes a concurrent ordered index (XIndex-R) and a concurrent hash index (XIndex-H). Similar to a recent proposal of the learned index, the indexes in XIndex use learned models to optimize index efficiency. Compared with the learned index, for the ordered index, XIndex-R is able to handle concurrent writes effectively and adapts its structure according to runtime workload characteristics. For the hash index, XIndex-H is able to avoid the resize operation blocking concurrent writes. Furthermore, the indexes in XIndex can index string keys much more efficiently than the learned index. We demonstrate the advantages of XIndex with YCSB, TPC-C (KV), which is a TPC-C-inspired benchmark for key-value stores, and micro-benchmarks. Compared with ordered indexes of Masstree and Wormhole, XIndex-R achieves up to 3.2× and 4.4× performance improvement on a 24-core machine. Compared with hash indexes of Intel TBB HashMap, XIndex-H achieves up to 3.1× speedup. The performance further improves by 91% after adding the optimizations on indexing string keys. The library is open-sourced.1","PeriodicalId":273014,"journal":{"name":"ACM Transactions on Storage (TOS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Concurrent Learned Indexes for Multicore Data Storage\",\"authors\":\"Zhaoguo Wang, Haibo Chen, Youyun Wang, Chuzhe Tang, Huan Wang\",\"doi\":\"10.1145/3478289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present XIndex, which is a concurrent index library and designed for fast queries. It includes a concurrent ordered index (XIndex-R) and a concurrent hash index (XIndex-H). Similar to a recent proposal of the learned index, the indexes in XIndex use learned models to optimize index efficiency. Compared with the learned index, for the ordered index, XIndex-R is able to handle concurrent writes effectively and adapts its structure according to runtime workload characteristics. For the hash index, XIndex-H is able to avoid the resize operation blocking concurrent writes. Furthermore, the indexes in XIndex can index string keys much more efficiently than the learned index. We demonstrate the advantages of XIndex with YCSB, TPC-C (KV), which is a TPC-C-inspired benchmark for key-value stores, and micro-benchmarks. Compared with ordered indexes of Masstree and Wormhole, XIndex-R achieves up to 3.2× and 4.4× performance improvement on a 24-core machine. Compared with hash indexes of Intel TBB HashMap, XIndex-H achieves up to 3.1× speedup. The performance further improves by 91% after adding the optimizations on indexing string keys. The library is open-sourced.1\",\"PeriodicalId\":273014,\"journal\":{\"name\":\"ACM Transactions on Storage (TOS)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Storage (TOS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3478289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Storage (TOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3478289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们介绍XIndex,它是一个并发索引库,专为快速查询而设计。它包括一个并发有序索引(XIndex-R)和一个并发散列索引(XIndex-H)。与最近提出的学习索引类似,XIndex中的索引使用学习模型来优化索引效率。与学习索引相比,对于有序索引,XIndex-R能够有效地处理并发写,并根据运行时工作负载特征调整其结构。对于散列索引,XIndex-H能够避免调整大小操作阻塞并发写操作。此外,XIndex中的索引可以比学习索引更有效地索引字符串键。我们演示了XIndex与YCSB、TPC-C (KV)(它是受TPC-C启发的键值存储基准)和微基准的优势。与Masstree和Wormhole的有序索引相比,XIndex-R在24核机器上的性能提升高达3.2倍和4.4倍。与Intel TBB HashMap的哈希索引相比,XIndex-H实现了高达3.1倍的加速。在对索引字符串键进行优化后,性能进一步提高了91%。这个库是开源的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Concurrent Learned Indexes for Multicore Data Storage
We present XIndex, which is a concurrent index library and designed for fast queries. It includes a concurrent ordered index (XIndex-R) and a concurrent hash index (XIndex-H). Similar to a recent proposal of the learned index, the indexes in XIndex use learned models to optimize index efficiency. Compared with the learned index, for the ordered index, XIndex-R is able to handle concurrent writes effectively and adapts its structure according to runtime workload characteristics. For the hash index, XIndex-H is able to avoid the resize operation blocking concurrent writes. Furthermore, the indexes in XIndex can index string keys much more efficiently than the learned index. We demonstrate the advantages of XIndex with YCSB, TPC-C (KV), which is a TPC-C-inspired benchmark for key-value stores, and micro-benchmarks. Compared with ordered indexes of Masstree and Wormhole, XIndex-R achieves up to 3.2× and 4.4× performance improvement on a 24-core machine. Compared with hash indexes of Intel TBB HashMap, XIndex-H achieves up to 3.1× speedup. The performance further improves by 91% after adding the optimizations on indexing string keys. The library is open-sourced.1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
WebAssembly-based Delta Sync for Cloud Storage Services DEFUSE: An Interface for Fast and Correct User Space File System Access Donag: Generating Efficient Patches and Diffs for Compressed Archives Building GC-free Key-value Store on HM-SMR Drives with ZoneFS Kangaroo: Theory and Practice of Caching Billions of Tiny Objects on Flash
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1