相关检测统计量局部最优量化合并的蒙特卡罗方法

D. Abraham
{"title":"相关检测统计量局部最优量化合并的蒙特卡罗方法","authors":"D. Abraham","doi":"10.1109/SSAP.1994.572430","DOIUrl":null,"url":null,"abstract":"In the detection of unknown deterministic signals in noise, consideration may be restricted to statistics that are sufficient for detection of certain classes of signals. Here, the case of correlated statistics that are assumed to have analytically intractable probability distributions is considered. A locally optimal quantized detector that merges the multivariate sufficient statistics is proposed. Quantization is required for implementation, which utilizes a Monte-Carlo evaluation of the levels minimizing the mean squared error for a specific partitioning of the range space of the sufficient statistics. Performance improvement over the individual statistics and a test using the maximum of the individual statistics is illustrated with an example.","PeriodicalId":151571,"journal":{"name":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Monte-Carlo Method for Locally Optimal Quantized Merging of Correlated Detection Statistics\",\"authors\":\"D. Abraham\",\"doi\":\"10.1109/SSAP.1994.572430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the detection of unknown deterministic signals in noise, consideration may be restricted to statistics that are sufficient for detection of certain classes of signals. Here, the case of correlated statistics that are assumed to have analytically intractable probability distributions is considered. A locally optimal quantized detector that merges the multivariate sufficient statistics is proposed. Quantization is required for implementation, which utilizes a Monte-Carlo evaluation of the levels minimizing the mean squared error for a specific partitioning of the range space of the sufficient statistics. Performance improvement over the individual statistics and a test using the maximum of the individual statistics is illustrated with an example.\",\"PeriodicalId\":151571,\"journal\":{\"name\":\"IEEE Seventh SP Workshop on Statistical Signal and Array Processing\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Seventh SP Workshop on Statistical Signal and Array Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSAP.1994.572430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSAP.1994.572430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在噪声中未知确定性信号的检测中,考虑可能仅限于足以检测某些类别信号的统计量。在这里,相关统计的情况下,假设具有分析难以处理的概率分布被考虑。提出了一种融合多元充分统计量的局部最优量化检测器。量化是需要实现的,它利用蒙特卡罗评估的水平最小化均方误差的一个特定划分的范围空间的充分统计量。通过一个示例说明了对单个统计数据的性能改进,以及使用单个统计数据最大值的测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Monte-Carlo Method for Locally Optimal Quantized Merging of Correlated Detection Statistics
In the detection of unknown deterministic signals in noise, consideration may be restricted to statistics that are sufficient for detection of certain classes of signals. Here, the case of correlated statistics that are assumed to have analytically intractable probability distributions is considered. A locally optimal quantized detector that merges the multivariate sufficient statistics is proposed. Quantization is required for implementation, which utilizes a Monte-Carlo evaluation of the levels minimizing the mean squared error for a specific partitioning of the range space of the sufficient statistics. Performance improvement over the individual statistics and a test using the maximum of the individual statistics is illustrated with an example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hopfield Network Approach to Beamforrning in Spread Spectrum Communication A Comparative Study of Statistical and Neural DOA Estimation Techniques A New Cumulant Based Phase Estimation Nonminimum-phase Systems By Allpass Study of the Couple (Reflection Coefficient, K-Nn Rule) An N-D Technique for Coherent Wave Doa Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1