基于领域知识的有效片段聚类

S. Patro, Wei Wang
{"title":"基于领域知识的有效片段聚类","authors":"S. Patro, Wei Wang","doi":"10.1109/DBKDA.2009.8","DOIUrl":null,"url":null,"abstract":"Clustering Web search result is a promising way to help alleviate the information overload for Web users. In this paper, we focus on clustering snippets returned by Google Scholar. We propose a novel similarity function based on mining domain knowledge and an outlier-conscious clustering algorithm. Experimental results showed improved effectiveness of the proposed approach compared with existing methods.","PeriodicalId":231150,"journal":{"name":"2009 First International Confernce on Advances in Databases, Knowledge, and Data Applications","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective Snippet Clustering with Domain Knowledge\",\"authors\":\"S. Patro, Wei Wang\",\"doi\":\"10.1109/DBKDA.2009.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering Web search result is a promising way to help alleviate the information overload for Web users. In this paper, we focus on clustering snippets returned by Google Scholar. We propose a novel similarity function based on mining domain knowledge and an outlier-conscious clustering algorithm. Experimental results showed improved effectiveness of the proposed approach compared with existing methods.\",\"PeriodicalId\":231150,\"journal\":{\"name\":\"2009 First International Confernce on Advances in Databases, Knowledge, and Data Applications\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 First International Confernce on Advances in Databases, Knowledge, and Data Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DBKDA.2009.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First International Confernce on Advances in Databases, Knowledge, and Data Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DBKDA.2009.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

聚类Web搜索结果是一种很有前途的方法,可以帮助减轻Web用户的信息过载。在本文中,我们主要关注谷歌Scholar返回的聚类片段。我们提出了一种新的基于挖掘领域知识的相似度函数和一种异常值意识聚类算法。实验结果表明,与现有方法相比,该方法的有效性得到了提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effective Snippet Clustering with Domain Knowledge
Clustering Web search result is a promising way to help alleviate the information overload for Web users. In this paper, we focus on clustering snippets returned by Google Scholar. We propose a novel similarity function based on mining domain knowledge and an outlier-conscious clustering algorithm. Experimental results showed improved effectiveness of the proposed approach compared with existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-level Topological Relations of the Spatial Reasoning System RCC-8 Source-Aware Repairs for Inconsistent Databases Using Input Buffers for Streaming XSLT Processing An Extension of XQuery for Graph Analysis of Biological Pathways IRCDB: A Database of Inter-residues Contacts in Protein Chains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1