医学图像压缩的形态学骨架化

Tun-Wen Pai, John H. L. Hansen
{"title":"医学图像压缩的形态学骨架化","authors":"Tun-Wen Pai, John H. L. Hansen","doi":"10.1109/CBMS.1992.244946","DOIUrl":null,"url":null,"abstract":"The authors introduce a lossless data compression technique based on the morphological skeleton representation. Mathematical morphology is a methodology for image analysis which provides a means for describing the geometrical structure of an image quantitatively. A morphological skeleton representation is a useful means of illustrating the geometrical properties of an image (such as shape, size, and orientations). Since it is capable of extracting the minimum underlying geometry of an image, it can also reduce the entropy of an image (data compression). In the present work, the compression ratio is calculated for the evaluation of a new data compression technique using a sample radiograph. This example illustrates that a compression ratio of 1.72 can be achieved through the use of morphological skeleton representation. Two new algorithms, boundary-constrained skeleton minimization and boundary-constrained skeleton reconstruction, are also presented for improving the performance of the morphological-based coding scheme.<<ETX>>","PeriodicalId":197891,"journal":{"name":"[1992] Proceedings Fifth Annual IEEE Symposium on Computer-Based Medical Systems","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Morphological skeletonization for medical image compression\",\"authors\":\"Tun-Wen Pai, John H. L. Hansen\",\"doi\":\"10.1109/CBMS.1992.244946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors introduce a lossless data compression technique based on the morphological skeleton representation. Mathematical morphology is a methodology for image analysis which provides a means for describing the geometrical structure of an image quantitatively. A morphological skeleton representation is a useful means of illustrating the geometrical properties of an image (such as shape, size, and orientations). Since it is capable of extracting the minimum underlying geometry of an image, it can also reduce the entropy of an image (data compression). In the present work, the compression ratio is calculated for the evaluation of a new data compression technique using a sample radiograph. This example illustrates that a compression ratio of 1.72 can be achieved through the use of morphological skeleton representation. Two new algorithms, boundary-constrained skeleton minimization and boundary-constrained skeleton reconstruction, are also presented for improving the performance of the morphological-based coding scheme.<<ETX>>\",\"PeriodicalId\":197891,\"journal\":{\"name\":\"[1992] Proceedings Fifth Annual IEEE Symposium on Computer-Based Medical Systems\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1992] Proceedings Fifth Annual IEEE Symposium on Computer-Based Medical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.1992.244946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings Fifth Annual IEEE Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.1992.244946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

介绍了一种基于形态学骨架表示的无损数据压缩技术。数学形态学是一种图像分析方法,它提供了一种定量描述图像几何结构的方法。形态学骨架表示是说明图像的几何属性(如形状、大小和方向)的有用方法。由于它能够提取图像的最小底层几何,它还可以减少图像的熵(数据压缩)。在目前的工作中,压缩比的计算是为了评估一种新的数据压缩技术,使用样本射线照片。这个例子说明了通过使用形态骨架表示可以实现1.72的压缩比。为了提高基于形态学的编码方案的性能,还提出了边界约束骨架最小化和边界约束骨架重构两种新算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Morphological skeletonization for medical image compression
The authors introduce a lossless data compression technique based on the morphological skeleton representation. Mathematical morphology is a methodology for image analysis which provides a means for describing the geometrical structure of an image quantitatively. A morphological skeleton representation is a useful means of illustrating the geometrical properties of an image (such as shape, size, and orientations). Since it is capable of extracting the minimum underlying geometry of an image, it can also reduce the entropy of an image (data compression). In the present work, the compression ratio is calculated for the evaluation of a new data compression technique using a sample radiograph. This example illustrates that a compression ratio of 1.72 can be achieved through the use of morphological skeleton representation. Two new algorithms, boundary-constrained skeleton minimization and boundary-constrained skeleton reconstruction, are also presented for improving the performance of the morphological-based coding scheme.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Local motion identification and correction schemes for ultrafast CT flow studies Graphical user interface system for automatic 3-D medical image analysis GAMEES II: an environment for building probabilistic expert systems based on arrays of Bayesian belief networks A methodology for the validation of image segmentation methods Shape analysis of mammographic calcifications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1