坦桑尼亚Wami河次流域径流对熟练和非线性偏倚校正的GCM降水变化的响应

F. Wambura
{"title":"坦桑尼亚Wami河次流域径流对熟练和非线性偏倚校正的GCM降水变化的响应","authors":"F. Wambura","doi":"10.9734/BJECC/2014/13457","DOIUrl":null,"url":null,"abstract":"The reliability of stream flow projection under changing climate cannot be guaranteed if the General Circulation Model (GCM) used for the projection of future climate does not predict well its past climate. In this study stream flows in the Wami River sub-basin were simulated under changing climate by the skilled and non-linear bias corrected GCM using a physically based and semi distributed rainfall runoff model, SWAT. The SWAT model was setup using the terrain, land use, soil, precipitation and temperature data. The baseline water uses were used to naturalise stream flows and the SWAT model was calibrated and validated using the historical stream flows. In addressing future runoff projections the domestic, livestock, irrigation and industrial water demands in the subbasin were projected to the year 2039 using the current irrigation area growth rates, Tanzania vision 2025 and development plans for the Wami River sub-basin. The GCMs were incorporated in the hydrological model so as to factor in the effects of climate change. Precipitation was selected as the changing climatic variable for projection because runoff is very sensitive to precipitation as compared to other climatic variables like temperature. A total of twenty four GCMs from CMIP3 database representing twentieth century precipitation were interpolated into forty five sub-catchments in the subOriginal Research Article British Journal of Environment & Climate Change, 4(4): 389-408, 2014 390 basin and evaluated for their skills. The HADCM3 model was selected due to its highest skill score in predicting past climate. Then the HADCM3 precipitation signal of scenario A2, was corrected by Non-linear Bias Correction (NBC) in the forty five sub-catchments in the sub-basin and used to simulate future stream flow. The results of stream flow simulated using skilled and non-linear corrected HADCM3 precipitation signal shows that stream flow is projected to increase for the near term climatology (2010 – 2039).","PeriodicalId":373103,"journal":{"name":"British Journal of Environment and Climate Change","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Stream flow response to skilled and non-linear bias corrected GCM precipitation change in the Wami River sub-basin, Tanzania.\",\"authors\":\"F. Wambura\",\"doi\":\"10.9734/BJECC/2014/13457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reliability of stream flow projection under changing climate cannot be guaranteed if the General Circulation Model (GCM) used for the projection of future climate does not predict well its past climate. In this study stream flows in the Wami River sub-basin were simulated under changing climate by the skilled and non-linear bias corrected GCM using a physically based and semi distributed rainfall runoff model, SWAT. The SWAT model was setup using the terrain, land use, soil, precipitation and temperature data. The baseline water uses were used to naturalise stream flows and the SWAT model was calibrated and validated using the historical stream flows. In addressing future runoff projections the domestic, livestock, irrigation and industrial water demands in the subbasin were projected to the year 2039 using the current irrigation area growth rates, Tanzania vision 2025 and development plans for the Wami River sub-basin. The GCMs were incorporated in the hydrological model so as to factor in the effects of climate change. Precipitation was selected as the changing climatic variable for projection because runoff is very sensitive to precipitation as compared to other climatic variables like temperature. A total of twenty four GCMs from CMIP3 database representing twentieth century precipitation were interpolated into forty five sub-catchments in the subOriginal Research Article British Journal of Environment & Climate Change, 4(4): 389-408, 2014 390 basin and evaluated for their skills. The HADCM3 model was selected due to its highest skill score in predicting past climate. Then the HADCM3 precipitation signal of scenario A2, was corrected by Non-linear Bias Correction (NBC) in the forty five sub-catchments in the sub-basin and used to simulate future stream flow. The results of stream flow simulated using skilled and non-linear corrected HADCM3 precipitation signal shows that stream flow is projected to increase for the near term climatology (2010 – 2039).\",\"PeriodicalId\":373103,\"journal\":{\"name\":\"British Journal of Environment and Climate Change\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Environment and Climate Change\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/BJECC/2014/13457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Environment and Climate Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/BJECC/2014/13457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

如果用于预测未来气候的一般环流模式(GCM)不能很好地预测过去气候,则无法保证气候变化下河流流量预测的可靠性。本研究采用基于物理的半分布式降雨径流模型SWAT,利用熟练的非线性偏差修正GCM模拟了气候变化条件下瓦米河子流域的水流。利用地形、土地利用、土壤、降水和温度数据建立SWAT模型。基线用水量用于自然化河流流量,SWAT模型使用历史河流流量进行校准和验证。在处理未来径流预测时,利用目前的灌溉面积增长率、坦桑尼亚2025年愿景和瓦米河分流域发展计划,预测了到2039年该分流域的家庭、牲畜、灌溉和工业用水需求。为了考虑气候变化的影响,在水文模型中纳入了gcm。选择降水作为变化的气候变量进行预测,因为与温度等其他气候变量相比,径流对降水非常敏感。《英国环境与气候变化学报》,2014,39(4):389-408,390流域,对CMIP3数据库中代表20世纪降水的24个gcm进行了插值,并对其技能进行了评估。选择HADCM3模式是因为它在预测过去气候方面的技能得分最高。然后对A2情景下的HADCM3降水信号进行非线性偏差校正(Non-linear Bias Correction, NBC),在子流域45个子集水区进行模拟。利用熟练的和非线性校正的HADCM3降水信号模拟径流的结果表明,在近期气候(2010 - 2039)预测径流将增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stream flow response to skilled and non-linear bias corrected GCM precipitation change in the Wami River sub-basin, Tanzania.
The reliability of stream flow projection under changing climate cannot be guaranteed if the General Circulation Model (GCM) used for the projection of future climate does not predict well its past climate. In this study stream flows in the Wami River sub-basin were simulated under changing climate by the skilled and non-linear bias corrected GCM using a physically based and semi distributed rainfall runoff model, SWAT. The SWAT model was setup using the terrain, land use, soil, precipitation and temperature data. The baseline water uses were used to naturalise stream flows and the SWAT model was calibrated and validated using the historical stream flows. In addressing future runoff projections the domestic, livestock, irrigation and industrial water demands in the subbasin were projected to the year 2039 using the current irrigation area growth rates, Tanzania vision 2025 and development plans for the Wami River sub-basin. The GCMs were incorporated in the hydrological model so as to factor in the effects of climate change. Precipitation was selected as the changing climatic variable for projection because runoff is very sensitive to precipitation as compared to other climatic variables like temperature. A total of twenty four GCMs from CMIP3 database representing twentieth century precipitation were interpolated into forty five sub-catchments in the subOriginal Research Article British Journal of Environment & Climate Change, 4(4): 389-408, 2014 390 basin and evaluated for their skills. The HADCM3 model was selected due to its highest skill score in predicting past climate. Then the HADCM3 precipitation signal of scenario A2, was corrected by Non-linear Bias Correction (NBC) in the forty five sub-catchments in the sub-basin and used to simulate future stream flow. The results of stream flow simulated using skilled and non-linear corrected HADCM3 precipitation signal shows that stream flow is projected to increase for the near term climatology (2010 – 2039).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling of Soil Loss through RUSLE2 for Soil Management in an Agricultural Field of Uccle, Belgium Characterization of Particulate Matter in Urban Environments and Its Effects on the Respiratory System of Mice Detecting Non-negligible New Influences in Environmental Data via a General Spatio-temporal Autoregressive Model Estimating surface CO2 flux based on soil concentration profile Response of Pigeonpea (Cajanus cajan L.) to Seed Polymerization with Micronutrients and Foliar Spray at Different Growth Stages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1