SARS-CoV-2主蛋白酶活性位点底物活化的计算表征

M. Khrenova, V. Tsirelson, A. Nemukhin
{"title":"SARS-CoV-2主蛋白酶活性位点底物活化的计算表征","authors":"M. Khrenova, V. Tsirelson, A. Nemukhin","doi":"10.14529/jsfi200304","DOIUrl":null,"url":null,"abstract":"Molecular dynamics simulations with the QM(DFT)/MM potentials are utilized to discriminate between reactive and nonreactive complexes of the SARS-CoV-2 main protease and its substrates. Classification of frames along the molecular dynamic trajectories is utilized by analysis of the 2D maps of the Laplacian of electron density. Those are calculated in the plane formed by the carbonyl group of the substrate and a nucleophilic sulfur atom of the cysteine residue that initiates enzymatic reaction. Utilization of the GPU-based DFT code allows fast and accurate simulations with the hybrid functional PBE0 and double-zeta basis set. Exclusion of the polarization functions accelerates the calculations 2-fold, however this does not describe the substrate activation. Larger basis set with d-functions on heavy atoms and p-functions on hydrogen atoms enables to disclose equilibrium between the reactive and nonreactive species along the MD trajectory. The suggested approach can be utilized to choose covalent inhibitors that will readily interact with the catalytic residue of the selected enzyme.","PeriodicalId":338883,"journal":{"name":"Supercomput. Front. Innov.","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computational Characterization of the Substrate Activation in the Active Site of SARS-CoV-2 Main Protease\",\"authors\":\"M. Khrenova, V. Tsirelson, A. Nemukhin\",\"doi\":\"10.14529/jsfi200304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Molecular dynamics simulations with the QM(DFT)/MM potentials are utilized to discriminate between reactive and nonreactive complexes of the SARS-CoV-2 main protease and its substrates. Classification of frames along the molecular dynamic trajectories is utilized by analysis of the 2D maps of the Laplacian of electron density. Those are calculated in the plane formed by the carbonyl group of the substrate and a nucleophilic sulfur atom of the cysteine residue that initiates enzymatic reaction. Utilization of the GPU-based DFT code allows fast and accurate simulations with the hybrid functional PBE0 and double-zeta basis set. Exclusion of the polarization functions accelerates the calculations 2-fold, however this does not describe the substrate activation. Larger basis set with d-functions on heavy atoms and p-functions on hydrogen atoms enables to disclose equilibrium between the reactive and nonreactive species along the MD trajectory. The suggested approach can be utilized to choose covalent inhibitors that will readily interact with the catalytic residue of the selected enzyme.\",\"PeriodicalId\":338883,\"journal\":{\"name\":\"Supercomput. Front. Innov.\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Supercomput. Front. Innov.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14529/jsfi200304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supercomput. Front. Innov.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14529/jsfi200304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用QM(DFT)/MM电位的分子动力学模拟来区分SARS-CoV-2主要蛋白酶及其底物的反应性和非反应性复合物。通过对二维电子密度拉普拉斯图的分析,利用了分子动力学轨迹框架的分类。这些是在由底物的羰基和启动酶促反应的半胱氨酸残基的亲核硫原子形成的平面上计算的。利用基于gpu的DFT代码,可以使用混合功能PBE0和双zeta基集进行快速准确的仿真。极化函数的排除使计算速度加快了2倍,但这并不能描述衬底的激活。重原子上的d-函数和氢原子上的p-函数的更大基集能够揭示沿MD轨迹的反应性和非反应性物质之间的平衡。建议的方法可以用来选择共价抑制剂,将很容易地与所选酶的催化残基相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational Characterization of the Substrate Activation in the Active Site of SARS-CoV-2 Main Protease
Molecular dynamics simulations with the QM(DFT)/MM potentials are utilized to discriminate between reactive and nonreactive complexes of the SARS-CoV-2 main protease and its substrates. Classification of frames along the molecular dynamic trajectories is utilized by analysis of the 2D maps of the Laplacian of electron density. Those are calculated in the plane formed by the carbonyl group of the substrate and a nucleophilic sulfur atom of the cysteine residue that initiates enzymatic reaction. Utilization of the GPU-based DFT code allows fast and accurate simulations with the hybrid functional PBE0 and double-zeta basis set. Exclusion of the polarization functions accelerates the calculations 2-fold, however this does not describe the substrate activation. Larger basis set with d-functions on heavy atoms and p-functions on hydrogen atoms enables to disclose equilibrium between the reactive and nonreactive species along the MD trajectory. The suggested approach can be utilized to choose covalent inhibitors that will readily interact with the catalytic residue of the selected enzyme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Supercomputer-Based Modeling System for Short-Term Prediction of Urban Surface Air Quality River Routing in the INM RAS-MSU Land Surface Model: Numerical Scheme and Parallel Implementation on Hybrid Supercomputers Data Assimilation by Neural Network for Ocean Circulation: Parallel Implementation Multistage Iterative Method to Tackle Inverse Problems of Wave Tomography Machine Learning Approaches to Extreme Weather Events Forecast in Urban Areas: Challenges and Initial Results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1