大数据分析在学术造假检测中的应用

Firdatul Jannah, Anara Indrany Nanda Ayu Anissa, Wanda Maulida, Novita Novita
{"title":"大数据分析在学术造假检测中的应用","authors":"Firdatul Jannah, Anara Indrany Nanda Ayu Anissa, Wanda Maulida, Novita Novita","doi":"10.21532/apfjournal.v7i2.261","DOIUrl":null,"url":null,"abstract":"This study aims to find out the effect of using big data analytics on the detection of academic fraud so that it can provide improvements and create significant changes, especially in reducing the level of academic fraud among students. The variables used in this research are big data analytics as the independent variable and academic fraud as the dependent variable. This study uses primary data obtained from ques-tionnaires distributed to Trilogy University students. The sample is 258 students from all study programs at Trilogy University class 2017 - 2020. The data processing and analysis method uses Partial Least Square (PLS). The results of this study indicate that the use of big data analytics has a positive and significant effect on the detection of academic fraud. This shows that universities that use big data analytics are able to detect academic fraud committed by students.","PeriodicalId":251943,"journal":{"name":"Asia Pacific Fraud Journal","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Use of Big Data Analytics in Detecting Academic Fraud\",\"authors\":\"Firdatul Jannah, Anara Indrany Nanda Ayu Anissa, Wanda Maulida, Novita Novita\",\"doi\":\"10.21532/apfjournal.v7i2.261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to find out the effect of using big data analytics on the detection of academic fraud so that it can provide improvements and create significant changes, especially in reducing the level of academic fraud among students. The variables used in this research are big data analytics as the independent variable and academic fraud as the dependent variable. This study uses primary data obtained from ques-tionnaires distributed to Trilogy University students. The sample is 258 students from all study programs at Trilogy University class 2017 - 2020. The data processing and analysis method uses Partial Least Square (PLS). The results of this study indicate that the use of big data analytics has a positive and significant effect on the detection of academic fraud. This shows that universities that use big data analytics are able to detect academic fraud committed by students.\",\"PeriodicalId\":251943,\"journal\":{\"name\":\"Asia Pacific Fraud Journal\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia Pacific Fraud Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21532/apfjournal.v7i2.261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia Pacific Fraud Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21532/apfjournal.v7i2.261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究旨在找出使用大数据分析对学术欺诈检测的影响,从而提供改进并产生重大变化,特别是在降低学生学术欺诈水平方面。本研究使用的变量是大数据分析作为自变量,学术造假作为因变量。本研究使用的主要数据是从发给Trilogy大学学生的问卷中获得的。样本是来自Trilogy大学2017 - 2020级所有学习项目的258名学生。数据处理和分析方法采用偏最小二乘法(PLS)。本研究结果表明,大数据分析的使用对学术欺诈的检测具有积极而显著的作用。这表明,使用大数据分析的大学能够发现学生的学术欺诈行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Use of Big Data Analytics in Detecting Academic Fraud
This study aims to find out the effect of using big data analytics on the detection of academic fraud so that it can provide improvements and create significant changes, especially in reducing the level of academic fraud among students. The variables used in this research are big data analytics as the independent variable and academic fraud as the dependent variable. This study uses primary data obtained from ques-tionnaires distributed to Trilogy University students. The sample is 258 students from all study programs at Trilogy University class 2017 - 2020. The data processing and analysis method uses Partial Least Square (PLS). The results of this study indicate that the use of big data analytics has a positive and significant effect on the detection of academic fraud. This shows that universities that use big data analytics are able to detect academic fraud committed by students.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Fraud Patterns in Islamic Banking Transactions: Strategies and Implementation of Prevention The Challenges of Anticorruption Education in Universities Evaluating the Impact of Digital Transformation and Sustainability Strategies on Earnings Management: A Text Mining Approach Corporate Governance as a Detector of Financial Statement Fraud: Systematic Literature Review Fraud Prevention in the Village Fund System: A Case Study in Marga Mulya Village, Tangerang
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1