量子化测量下的状态估计:西格玛点贝叶斯方法

C. Manes, F. Martinelli
{"title":"量子化测量下的状态估计:西格玛点贝叶斯方法","authors":"C. Manes, F. Martinelli","doi":"10.1109/CDC.2013.6760677","DOIUrl":null,"url":null,"abstract":"Sensors providing only quantized or binary measurements are present in several automation contexts. A remarkable example is the Radio Frequency IDentification technology when only the detection of the tags is used as information for robot localization. In this paper we propose an algorithm which merges some concepts of the Unscented Kalman Filter (UKF) with some aspects of the Particle Filter (PF). The prediction step of the proposed method is like the prediction step of a standard UKF. On the contrary, the correction step of the UKF can not be trivially implemented due to the presence of binary measurements. For this reason a different correction step is proposed here where the sigma-points weights are modified according to their agreement with the measurements, like it is done for particles of a PF. The main advantage of the proposed algorithm with respect to a PF is that much less particles are needed. Moreover, the way to generate particles in the proposed approach is not random but deterministic. A simulative comparison of the proposed approach with respect to a PF and with respect to a Quantized Kalman Filter is reported in the paper.","PeriodicalId":415568,"journal":{"name":"52nd IEEE Conference on Decision and Control","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"State estimation under quantized measurements: A Sigma-Point Bayesian approach\",\"authors\":\"C. Manes, F. Martinelli\",\"doi\":\"10.1109/CDC.2013.6760677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sensors providing only quantized or binary measurements are present in several automation contexts. A remarkable example is the Radio Frequency IDentification technology when only the detection of the tags is used as information for robot localization. In this paper we propose an algorithm which merges some concepts of the Unscented Kalman Filter (UKF) with some aspects of the Particle Filter (PF). The prediction step of the proposed method is like the prediction step of a standard UKF. On the contrary, the correction step of the UKF can not be trivially implemented due to the presence of binary measurements. For this reason a different correction step is proposed here where the sigma-points weights are modified according to their agreement with the measurements, like it is done for particles of a PF. The main advantage of the proposed algorithm with respect to a PF is that much less particles are needed. Moreover, the way to generate particles in the proposed approach is not random but deterministic. A simulative comparison of the proposed approach with respect to a PF and with respect to a Quantized Kalman Filter is reported in the paper.\",\"PeriodicalId\":415568,\"journal\":{\"name\":\"52nd IEEE Conference on Decision and Control\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"52nd IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2013.6760677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"52nd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2013.6760677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

仅提供量子化或二进制测量的传感器存在于一些自动化环境中。一个显著的例子是射频识别技术,它只使用检测到的标签作为机器人定位的信息。本文提出了一种将无气味卡尔曼滤波(UKF)的某些概念与粒子滤波(PF)的某些方面相结合的算法。该方法的预测步骤类似于标准UKF的预测步骤。相反,由于二进制测量的存在,UKF的校正步骤不能轻易实现。由于这个原因,这里提出了一个不同的校正步骤,其中sigma点权重根据它们与测量值的一致性进行修改,就像对PF的粒子所做的那样。对于PF,所提出的算法的主要优点是所需的粒子要少得多。此外,该方法产生粒子的方式不是随机的,而是确定性的。本文对所提出的方法相对于PF和相对于量化卡尔曼滤波器进行了仿真比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
State estimation under quantized measurements: A Sigma-Point Bayesian approach
Sensors providing only quantized or binary measurements are present in several automation contexts. A remarkable example is the Radio Frequency IDentification technology when only the detection of the tags is used as information for robot localization. In this paper we propose an algorithm which merges some concepts of the Unscented Kalman Filter (UKF) with some aspects of the Particle Filter (PF). The prediction step of the proposed method is like the prediction step of a standard UKF. On the contrary, the correction step of the UKF can not be trivially implemented due to the presence of binary measurements. For this reason a different correction step is proposed here where the sigma-points weights are modified according to their agreement with the measurements, like it is done for particles of a PF. The main advantage of the proposed algorithm with respect to a PF is that much less particles are needed. Moreover, the way to generate particles in the proposed approach is not random but deterministic. A simulative comparison of the proposed approach with respect to a PF and with respect to a Quantized Kalman Filter is reported in the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bandits with budgets Decentralized control of partially observable Markov decision processes Torque allocation in electric vehicles with in-wheel motors: A performance-oriented approach A validated integration algorithm for nonlinear ODEs using Taylor models and ellipsoidal calculus Graphical FPGA design for a predictive controller with application to spacecraft rendezvous
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1