股票期权市场与股票收益的分歧

Benjamin Golez, Ruslan Goyenko
{"title":"股票期权市场与股票收益的分歧","authors":"Benjamin Golez, Ruslan Goyenko","doi":"10.2139/ssrn.3443241","DOIUrl":null,"url":null,"abstract":"\n We estimate investor disagreement from synthetic long and short stock trades in the equity options market. We show that high disagreement predicts low stock returns after positive earnings surprises and high stock returns after negative earnings surprises. The negative effect is stronger for high-beta stocks and stocks that are more difficult to sell short. In the cross-section of all stocks and the subset of the 500 largest companies, high disagreement robustly predicts low monthly and weekly stock returns.","PeriodicalId":293888,"journal":{"name":"Econometric Modeling: Derivatives eJournal","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Disagreement in the Equity Options Market and Stock Returns\",\"authors\":\"Benjamin Golez, Ruslan Goyenko\",\"doi\":\"10.2139/ssrn.3443241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We estimate investor disagreement from synthetic long and short stock trades in the equity options market. We show that high disagreement predicts low stock returns after positive earnings surprises and high stock returns after negative earnings surprises. The negative effect is stronger for high-beta stocks and stocks that are more difficult to sell short. In the cross-section of all stocks and the subset of the 500 largest companies, high disagreement robustly predicts low monthly and weekly stock returns.\",\"PeriodicalId\":293888,\"journal\":{\"name\":\"Econometric Modeling: Derivatives eJournal\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Modeling: Derivatives eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3443241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Derivatives eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3443241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们从股票期权市场的综合多头和空头股票交易中估计投资者的分歧。我们发现,高分歧预测盈利意外为正后的低股票回报和盈利意外为负后的高股票回报。对于高贝塔股票和更难卖空的股票,负面影响更大。在所有股票的横截面和500家最大公司的子集中,高分歧有力地预示着低的月度和每周股票回报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Disagreement in the Equity Options Market and Stock Returns
We estimate investor disagreement from synthetic long and short stock trades in the equity options market. We show that high disagreement predicts low stock returns after positive earnings surprises and high stock returns after negative earnings surprises. The negative effect is stronger for high-beta stocks and stocks that are more difficult to sell short. In the cross-section of all stocks and the subset of the 500 largest companies, high disagreement robustly predicts low monthly and weekly stock returns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Macro Hedge for Implicit Options of Type §489 Net Buying Pressure and the Information in Bitcoin Option Trades Futures Contract Collateralization and its Implications Has Manipulation in the VIX Decreased? Optimal Dynamic Futures Portfolio Under a Multifactor Gaussian Framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1