基于二维主成分分析和支持向量机的人脸性别识别

L. Bui, D. Tran, Xu Huang, G. Chetty
{"title":"基于二维主成分分析和支持向量机的人脸性别识别","authors":"L. Bui, D. Tran, Xu Huang, G. Chetty","doi":"10.1109/NSS.2010.19","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method for solving face gender recognition problem. This method employs 2D Principal Component Analysis, one of the prominent methods for extracting feature vectors, and Support Vector Machine, the most powerful discriminative method for classification. Experiments for the proposed approach have been conducted on FERET data set and the results show that the proposed method could improve the classification rates.","PeriodicalId":127173,"journal":{"name":"2010 Fourth International Conference on Network and System Security","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Face Gender Recognition Based on 2D Principal Component Analysis and Support Vector Machine\",\"authors\":\"L. Bui, D. Tran, Xu Huang, G. Chetty\",\"doi\":\"10.1109/NSS.2010.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel method for solving face gender recognition problem. This method employs 2D Principal Component Analysis, one of the prominent methods for extracting feature vectors, and Support Vector Machine, the most powerful discriminative method for classification. Experiments for the proposed approach have been conducted on FERET data set and the results show that the proposed method could improve the classification rates.\",\"PeriodicalId\":127173,\"journal\":{\"name\":\"2010 Fourth International Conference on Network and System Security\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Fourth International Conference on Network and System Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSS.2010.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Fourth International Conference on Network and System Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSS.2010.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

提出了一种新的人脸性别识别方法。该方法采用了提取特征向量的主要方法之一二维主成分分析和最强大的判别分类方法支持向量机。在FERET数据集上进行了实验,结果表明该方法可以提高分类率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Face Gender Recognition Based on 2D Principal Component Analysis and Support Vector Machine
This paper presents a novel method for solving face gender recognition problem. This method employs 2D Principal Component Analysis, one of the prominent methods for extracting feature vectors, and Support Vector Machine, the most powerful discriminative method for classification. Experiments for the proposed approach have been conducted on FERET data set and the results show that the proposed method could improve the classification rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Privacy-Preserving Protocols for String Matching The PU-Tree: A Partition-Based Uncertain High-Dimensional Indexing Algorithm Ignorant Experts: Computer and Network Security Support from Internet Service Providers Resource Selection from Distributed Semantic Web Stores A Purpose Based Access Control in XML Databases System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1