分布式能源的能源服务接口

Tylor E. Slay, R. Bass
{"title":"分布式能源的能源服务接口","authors":"Tylor E. Slay, R. Bass","doi":"10.1109/SusTech51236.2021.9467416","DOIUrl":null,"url":null,"abstract":"Renewable energy resources, particularly wind and solar photovoltaic, are becoming significant contributors to electric power generation. These re-sources will contribute towards achieving sustainable electric power systems. However, renewable resources will dramatically increase the demand for flexible power system operations. This paper proposes an energy service interface that will allow aggregated distributed energy resources, such as residential loads and inverter-based systems, to participate in NERC-defined smart energy reliability services. Such cyber-physical systems will increase system flexibility by ensuring match between energy supply and energy demand.Aggregation and coordinated dispatch of millions of distributed energy resources will require development of large-scale computing networks. Several smart grid interface-enabling technologies, including IEEE 2030.5, Common Smart Inverter Profile, SunSpec Modbus, and CTA 2045, are discussed. Residential loads are categorized by their static and dynamic energy characteristics to identify services in which they can participate. The business model for the energy services interface as well as probabilistic modeling for resource estimation are highlighted as future considerations.","PeriodicalId":127126,"journal":{"name":"2021 IEEE Conference on Technologies for Sustainability (SusTech)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"An Energy Service Interface for Distributed Energy Resources\",\"authors\":\"Tylor E. Slay, R. Bass\",\"doi\":\"10.1109/SusTech51236.2021.9467416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Renewable energy resources, particularly wind and solar photovoltaic, are becoming significant contributors to electric power generation. These re-sources will contribute towards achieving sustainable electric power systems. However, renewable resources will dramatically increase the demand for flexible power system operations. This paper proposes an energy service interface that will allow aggregated distributed energy resources, such as residential loads and inverter-based systems, to participate in NERC-defined smart energy reliability services. Such cyber-physical systems will increase system flexibility by ensuring match between energy supply and energy demand.Aggregation and coordinated dispatch of millions of distributed energy resources will require development of large-scale computing networks. Several smart grid interface-enabling technologies, including IEEE 2030.5, Common Smart Inverter Profile, SunSpec Modbus, and CTA 2045, are discussed. Residential loads are categorized by their static and dynamic energy characteristics to identify services in which they can participate. The business model for the energy services interface as well as probabilistic modeling for resource estimation are highlighted as future considerations.\",\"PeriodicalId\":127126,\"journal\":{\"name\":\"2021 IEEE Conference on Technologies for Sustainability (SusTech)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Conference on Technologies for Sustainability (SusTech)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SusTech51236.2021.9467416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Conference on Technologies for Sustainability (SusTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SusTech51236.2021.9467416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

可再生能源,特别是风能和太阳能光电,正在成为发电的重要贡献者。这些资源将有助于实现可持续电力系统。然而,可再生资源将大大增加对灵活电力系统运行的需求。本文提出了一个能源服务接口,该接口将允许聚合分布式能源,如住宅负荷和基于逆变器的系统,参与nerc定义的智能能源可靠性服务。这种网络物理系统将通过确保能源供应和能源需求之间的匹配来增加系统的灵活性。数以百万计的分布式能源的聚合和协调调度将需要大规模计算网络的发展。讨论了几种智能电网接口使能技术,包括IEEE 2030.5、通用智能逆变器配置文件、SunSpec Modbus和CTA 2045。住宅负荷按其静态和动态能源特性进行分类,以确定他们可以参与的服务。能源服务接口的业务模型以及资源估计的概率建模被强调为未来的考虑事项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Energy Service Interface for Distributed Energy Resources
Renewable energy resources, particularly wind and solar photovoltaic, are becoming significant contributors to electric power generation. These re-sources will contribute towards achieving sustainable electric power systems. However, renewable resources will dramatically increase the demand for flexible power system operations. This paper proposes an energy service interface that will allow aggregated distributed energy resources, such as residential loads and inverter-based systems, to participate in NERC-defined smart energy reliability services. Such cyber-physical systems will increase system flexibility by ensuring match between energy supply and energy demand.Aggregation and coordinated dispatch of millions of distributed energy resources will require development of large-scale computing networks. Several smart grid interface-enabling technologies, including IEEE 2030.5, Common Smart Inverter Profile, SunSpec Modbus, and CTA 2045, are discussed. Residential loads are categorized by their static and dynamic energy characteristics to identify services in which they can participate. The business model for the energy services interface as well as probabilistic modeling for resource estimation are highlighted as future considerations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Welcome Message from the Conference Chair Molten Salt Based Nanofluids for Solar Thermal Power Plant: A Case Study Sparking Energy Mindset at Home with the Create a Spark Energy House Challenge High-Endurance UAV Via Parasitic Weight Minimization and Wireless Energy Harvesting AI Legitimacy for Sustainability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1