发射功率变化对无线胶囊内窥镜定位精度的影响

P. Swar, Y. Ye, K. Ghaboosi, K. Pahlavan
{"title":"发射功率变化对无线胶囊内窥镜定位精度的影响","authors":"P. Swar, Y. Ye, K. Ghaboosi, K. Pahlavan","doi":"10.1109/WCNC.2012.6214142","DOIUrl":null,"url":null,"abstract":"This paper presents an analysis on localization accuracy of a capsule used for wireless endoscopy application when there are random variations in transmit power of sensor nodes. We use a three-dimensional human body model and the log normal model for Received Signal Strength (RSS) radio propagation from the implant to the sensor nodes on the body surface to find accuracy bounds in three digestive organs, namely stomach, small intestine, and large intestine, which form the human Gastro-Intestinal (GI) track. The analysis is done using Bayesian Crameŕ-Rao bound assuming that the transmit power is random process with known prior distribution. We provide analysis of the factors affecting localization accuracy including various organ environment, external sensor array topology. The simulation results show that the capsule localization inside large intestine is affected the most with the transmit power randomness, while wireless capsule can be localized with best accuracy inside the small intestine. Finally, we propose an approach to improve the attainable accuracy bounds.","PeriodicalId":329194,"journal":{"name":"2012 IEEE Wireless Communications and Networking Conference (WCNC)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"On effect of transmit power variance on localization accuracy in wireless capsule endoscopy\",\"authors\":\"P. Swar, Y. Ye, K. Ghaboosi, K. Pahlavan\",\"doi\":\"10.1109/WCNC.2012.6214142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an analysis on localization accuracy of a capsule used for wireless endoscopy application when there are random variations in transmit power of sensor nodes. We use a three-dimensional human body model and the log normal model for Received Signal Strength (RSS) radio propagation from the implant to the sensor nodes on the body surface to find accuracy bounds in three digestive organs, namely stomach, small intestine, and large intestine, which form the human Gastro-Intestinal (GI) track. The analysis is done using Bayesian Crameŕ-Rao bound assuming that the transmit power is random process with known prior distribution. We provide analysis of the factors affecting localization accuracy including various organ environment, external sensor array topology. The simulation results show that the capsule localization inside large intestine is affected the most with the transmit power randomness, while wireless capsule can be localized with best accuracy inside the small intestine. Finally, we propose an approach to improve the attainable accuracy bounds.\",\"PeriodicalId\":329194,\"journal\":{\"name\":\"2012 IEEE Wireless Communications and Networking Conference (WCNC)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Wireless Communications and Networking Conference (WCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCNC.2012.6214142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Wireless Communications and Networking Conference (WCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNC.2012.6214142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文分析了传感器节点发射功率随机变化时无线内窥镜用胶囊的定位精度问题。我们使用三维人体模型和从植入物到体表传感器节点的接收信号强度(RSS)无线电传播的对数正态模型,在形成人体胃肠道(GI)轨道的三个消化器官即胃、小肠和大肠中寻找精度界限。假设发射功率是具有已知先验分布的随机过程,利用贝叶斯Crameŕ-Rao界进行分析。分析了影响定位精度的因素,包括各种器官环境、外部传感器阵列拓扑结构等。仿真结果表明,发射功率随机性对大肠内胶囊定位的影响最大,而无线胶囊在小肠内的定位精度最高。最后,我们提出了一种提高可达到精度界限的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On effect of transmit power variance on localization accuracy in wireless capsule endoscopy
This paper presents an analysis on localization accuracy of a capsule used for wireless endoscopy application when there are random variations in transmit power of sensor nodes. We use a three-dimensional human body model and the log normal model for Received Signal Strength (RSS) radio propagation from the implant to the sensor nodes on the body surface to find accuracy bounds in three digestive organs, namely stomach, small intestine, and large intestine, which form the human Gastro-Intestinal (GI) track. The analysis is done using Bayesian Crameŕ-Rao bound assuming that the transmit power is random process with known prior distribution. We provide analysis of the factors affecting localization accuracy including various organ environment, external sensor array topology. The simulation results show that the capsule localization inside large intestine is affected the most with the transmit power randomness, while wireless capsule can be localized with best accuracy inside the small intestine. Finally, we propose an approach to improve the attainable accuracy bounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent overlapping MAP domain forming for mobility management in HMIPv6 access networks Fair resource allocation for the relay backhaul link in LTE-Advanced Replication routing for Delay Tolerant Networking: A hybrid between utility and geographic approach A resilience wireless enhancement for neighborhood watching system Order-statistics-based relay selection for uplink cellular networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1