基于fpga的高斯Copula模型数据流引擎

Huabin Ruan, Xiaomeng Huang, H. Fu, Guangwen Yang, W. Luk, S. Racanière, O. Pell, Wenji Han
{"title":"基于fpga的高斯Copula模型数据流引擎","authors":"Huabin Ruan, Xiaomeng Huang, H. Fu, Guangwen Yang, W. Luk, S. Racanière, O. Pell, Wenji Han","doi":"10.1109/FCCM.2013.14","DOIUrl":null,"url":null,"abstract":"The Gaussian Copula Model (GCM) plays an important role in the state-of-the-art financial analysis field for modeling the dependence of financial assets. However, the existing implementations of GCM are all computationallydemanding and time-consuming. In this paper, we propose a Dataflow Engine (DFE) design to accelerate the GCM computation. Specifically, a commonly used CPU-friendly GCM algorithm is converted into a fully-pipelined dataflow graph through four steps of optimization: recomposing the algorithm to be pipeline-friendly, removing unnecessary computation, sharing common computing results, and reducing the computing precision while maintaining the same level of accuracy for the computation results. The performance of the proposed DFE design is compared with three CPU-based implementations that are well-optimized. Experimental results show that our DFE solution not only generates fairly accurate result, but also achieves a maximum of 467x speedup over a single-thread CPU-based solution, 120x speedup over a multi-thread CPUbased solution, and 47x speedup over an MPI-based solution.","PeriodicalId":269887,"journal":{"name":"2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An FPGA-Based Data Flow Engine for Gaussian Copula Model\",\"authors\":\"Huabin Ruan, Xiaomeng Huang, H. Fu, Guangwen Yang, W. Luk, S. Racanière, O. Pell, Wenji Han\",\"doi\":\"10.1109/FCCM.2013.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Gaussian Copula Model (GCM) plays an important role in the state-of-the-art financial analysis field for modeling the dependence of financial assets. However, the existing implementations of GCM are all computationallydemanding and time-consuming. In this paper, we propose a Dataflow Engine (DFE) design to accelerate the GCM computation. Specifically, a commonly used CPU-friendly GCM algorithm is converted into a fully-pipelined dataflow graph through four steps of optimization: recomposing the algorithm to be pipeline-friendly, removing unnecessary computation, sharing common computing results, and reducing the computing precision while maintaining the same level of accuracy for the computation results. The performance of the proposed DFE design is compared with three CPU-based implementations that are well-optimized. Experimental results show that our DFE solution not only generates fairly accurate result, but also achieves a maximum of 467x speedup over a single-thread CPU-based solution, 120x speedup over a multi-thread CPUbased solution, and 47x speedup over an MPI-based solution.\",\"PeriodicalId\":269887,\"journal\":{\"name\":\"2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCCM.2013.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2013.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

高斯Copula模型(Gaussian Copula Model, GCM)用于对金融资产的依赖性进行建模,在当前金融分析领域中发挥着重要作用。然而,现有的GCM实现都是计算要求高且耗时的。在本文中,我们提出了一个数据流引擎(DFE)设计来加速GCM的计算。具体而言,将一种常用的cpu友好型GCM算法通过重组算法使其对管道友好、去除不必要的计算、共享公共计算结果、降低计算精度同时保持计算结果的相同精度四个优化步骤,转化为全流水线的数据流图。将所提出的DFE设计与三种优化良好的基于cpu的实现进行了性能比较。实验结果表明,我们的DFE解决方案不仅产生了相当准确的结果,而且在基于单线程cpu的解决方案上实现了467倍的加速,在基于多线程cpu的解决方案上实现了120倍的加速,在基于mpi的解决方案上实现了47倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An FPGA-Based Data Flow Engine for Gaussian Copula Model
The Gaussian Copula Model (GCM) plays an important role in the state-of-the-art financial analysis field for modeling the dependence of financial assets. However, the existing implementations of GCM are all computationallydemanding and time-consuming. In this paper, we propose a Dataflow Engine (DFE) design to accelerate the GCM computation. Specifically, a commonly used CPU-friendly GCM algorithm is converted into a fully-pipelined dataflow graph through four steps of optimization: recomposing the algorithm to be pipeline-friendly, removing unnecessary computation, sharing common computing results, and reducing the computing precision while maintaining the same level of accuracy for the computation results. The performance of the proposed DFE design is compared with three CPU-based implementations that are well-optimized. Experimental results show that our DFE solution not only generates fairly accurate result, but also achieves a maximum of 467x speedup over a single-thread CPU-based solution, 120x speedup over a multi-thread CPUbased solution, and 47x speedup over an MPI-based solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Escaping the Academic Sandbox: Realizing VPR Circuits on Xilinx Devices Exploiting Input Parameter Uncertainty for Reducing Datapath Precision of SPICE Device Models Accurate Thermal-Profile Estimation and Validation for FPGA-Mapped Circuits Boosting Memory Performance of Many-Core FPGA Device through Dynamic Precedence Graph A Fast and Accurate FPGA-Based Fault Injection System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1