Anthony C. K. Leung, Aaron D Tranter, Karun V. Paul, J. Everett, P. Vernaz-Gris, D. Higginbottom, G. Campbell, P. Lam, B. Buchler
{"title":"利用机器学习和单光子扩展梯度回声记忆","authors":"Anthony C. K. Leung, Aaron D Tranter, Karun V. Paul, J. Everett, P. Vernaz-Gris, D. Higginbottom, G. Campbell, P. Lam, B. Buchler","doi":"10.1364/CLEOPR.2018.TH1D.2","DOIUrl":null,"url":null,"abstract":"Gradient echo memory is the most efficient quantum memory protocol to date. Recent additions of machine learning and compatible single photons can raise its performance and the possibility of using it as a quantum gate.","PeriodicalId":184212,"journal":{"name":"2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extending Gradient Echo Memory Using Machine Learning and Single Photons\",\"authors\":\"Anthony C. K. Leung, Aaron D Tranter, Karun V. Paul, J. Everett, P. Vernaz-Gris, D. Higginbottom, G. Campbell, P. Lam, B. Buchler\",\"doi\":\"10.1364/CLEOPR.2018.TH1D.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gradient echo memory is the most efficient quantum memory protocol to date. Recent additions of machine learning and compatible single photons can raise its performance and the possibility of using it as a quantum gate.\",\"PeriodicalId\":184212,\"journal\":{\"name\":\"2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/CLEOPR.2018.TH1D.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/CLEOPR.2018.TH1D.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extending Gradient Echo Memory Using Machine Learning and Single Photons
Gradient echo memory is the most efficient quantum memory protocol to date. Recent additions of machine learning and compatible single photons can raise its performance and the possibility of using it as a quantum gate.