癫痫发作模式预测对脑电图信号压缩的敏感性

Sally El-Gindy, S. El-Dolil, A. El-Fishawy, El-Sayed M. El-Rabaie, M. Dessouky, F. El-Samie, Turky Elotaiby, Saleh Elshebeily
{"title":"癫痫发作模式预测对脑电图信号压缩的敏感性","authors":"Sally El-Gindy, S. El-Dolil, A. El-Fishawy, El-Sayed M. El-Rabaie, M. Dessouky, F. El-Samie, Turky Elotaiby, Saleh Elshebeily","doi":"10.21608/mjeer.2019.62768","DOIUrl":null,"url":null,"abstract":"This paper presents a framework for Electroencephalography (EEG) seizure prediction in time domain. Moreover, it studies an efficient lossy EEG signal compression technique and its effect on further processing for seizure prediction in a realistic signal acquisition and compression scenario. Compression of EEG signals are one of the most important solutions in saving speed up signals transfer, reduction of energy transmission and the required memory for storage in addition to reduction costs for storage hardware and network bandwidth. The main objective of this research is to use trigonometric compression techniques including; Discrete Cosine Transform (DCT) and Discrete Sine Transform (DST) algorithms on EEG signals and study the impact of the reconstructed EEG signals on its seizure prediction ability. Simulation results show that the DCT achieves the best prediction results compared with DST technique achieving sensitivity of 95.238% and 85.714% respectively. The proposed approach gives longer prediction times compared to traditional EEG seizure prediction approaches. Therefore, it will help specialists for the prediction of epileptic seizure as earlier as possible.","PeriodicalId":218019,"journal":{"name":"Menoufia Journal of Electronic Engineering Research","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitivity of Seizure Pattern Prediction to EEG Signal Compression\",\"authors\":\"Sally El-Gindy, S. El-Dolil, A. El-Fishawy, El-Sayed M. El-Rabaie, M. Dessouky, F. El-Samie, Turky Elotaiby, Saleh Elshebeily\",\"doi\":\"10.21608/mjeer.2019.62768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a framework for Electroencephalography (EEG) seizure prediction in time domain. Moreover, it studies an efficient lossy EEG signal compression technique and its effect on further processing for seizure prediction in a realistic signal acquisition and compression scenario. Compression of EEG signals are one of the most important solutions in saving speed up signals transfer, reduction of energy transmission and the required memory for storage in addition to reduction costs for storage hardware and network bandwidth. The main objective of this research is to use trigonometric compression techniques including; Discrete Cosine Transform (DCT) and Discrete Sine Transform (DST) algorithms on EEG signals and study the impact of the reconstructed EEG signals on its seizure prediction ability. Simulation results show that the DCT achieves the best prediction results compared with DST technique achieving sensitivity of 95.238% and 85.714% respectively. The proposed approach gives longer prediction times compared to traditional EEG seizure prediction approaches. Therefore, it will help specialists for the prediction of epileptic seizure as earlier as possible.\",\"PeriodicalId\":218019,\"journal\":{\"name\":\"Menoufia Journal of Electronic Engineering Research\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Menoufia Journal of Electronic Engineering Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21608/mjeer.2019.62768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Menoufia Journal of Electronic Engineering Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/mjeer.2019.62768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种脑电图癫痫发作的时域预测框架。此外,研究了一种有效的有损脑电图信号压缩技术及其在实际信号采集和压缩场景下对癫痫发作预测进一步处理的影响。脑电图信号的压缩是提高信号传输速度、减少能量传输、节省存储空间、降低存储硬件和网络带宽成本的重要解决方案之一。本研究的主要目的是使用三角压缩技术,包括;对脑电信号进行离散余弦变换(DCT)和离散正弦变换(DST)算法,研究重构后的脑电信号对其癫痫发作预测能力的影响。仿真结果表明,与DST技术相比,DCT预测效果最好,灵敏度分别为95.238%和85.714%。与传统的脑电图癫痫发作预测方法相比,该方法的预测时间更长。因此,它将有助于专家尽早预测癫痫发作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sensitivity of Seizure Pattern Prediction to EEG Signal Compression
This paper presents a framework for Electroencephalography (EEG) seizure prediction in time domain. Moreover, it studies an efficient lossy EEG signal compression technique and its effect on further processing for seizure prediction in a realistic signal acquisition and compression scenario. Compression of EEG signals are one of the most important solutions in saving speed up signals transfer, reduction of energy transmission and the required memory for storage in addition to reduction costs for storage hardware and network bandwidth. The main objective of this research is to use trigonometric compression techniques including; Discrete Cosine Transform (DCT) and Discrete Sine Transform (DST) algorithms on EEG signals and study the impact of the reconstructed EEG signals on its seizure prediction ability. Simulation results show that the DCT achieves the best prediction results compared with DST technique achieving sensitivity of 95.238% and 85.714% respectively. The proposed approach gives longer prediction times compared to traditional EEG seizure prediction approaches. Therefore, it will help specialists for the prediction of epileptic seizure as earlier as possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of Brain Neuroimaging for Alzheimer's Disease Employing Principal Component Analysis DICOM Medical Image Security with DNA- Non-Uniform Cellular Automata and JSMP Map Based Encryption Technique Photonic Crystal Fiber Sensors, Literature Review, Challenges, and Some Novel Trends Cascading ensemble machine learning algorithms for maize yield level prediction Vibration Control of Horizontally Supported Jeffcott-Rotor System Utilizing PIRC-controller
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1