{"title":"平面三自由度并联机器人的自适应神经滑模控制","authors":"Thanh Nguyen Truong, Hee-Jun Kang, T. Le","doi":"10.1145/3386164.3387261","DOIUrl":null,"url":null,"abstract":"This paper proposes a combination between a neural network and an adaptive sliding mode control for trajectory tracking control of a 3-DOF planar parallel manipulator. It has a complicated dynamic model, including modelling uncertainties, frictional uncertainties and external disturbances. The proposed control algorithm is to use a PID sliding mode surface, an adaptive sliding mode controller with a neural network to overcome the drawback of the traditional sliding mode controllers, such as slow response rate with variation of uncertainties and external disturbances, chattering, and upper bound values of undefined dynamics which affects system performance, high wear of moving mechanical parts and high heat losses in power circuits. The radial basis function neural network is designed to compensate for uncertainties and external disturbances, which allows small switching gain. Hence, the chattering can be significantly reduced. In addition, an adaptive control law is used to adaptively converge small switching gains of the sliding mode controller as the neural network reduces model uncertainties. The effectiveness of the proposed control strategy is demonstrated by simulations which are conducted by using the combination of Sim-Mechanics and SolidWorks.","PeriodicalId":231209,"journal":{"name":"Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent Control","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Adaptive Neural Sliding Mode Control for 3-DOF Planar Parallel Manipulators\",\"authors\":\"Thanh Nguyen Truong, Hee-Jun Kang, T. Le\",\"doi\":\"10.1145/3386164.3387261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a combination between a neural network and an adaptive sliding mode control for trajectory tracking control of a 3-DOF planar parallel manipulator. It has a complicated dynamic model, including modelling uncertainties, frictional uncertainties and external disturbances. The proposed control algorithm is to use a PID sliding mode surface, an adaptive sliding mode controller with a neural network to overcome the drawback of the traditional sliding mode controllers, such as slow response rate with variation of uncertainties and external disturbances, chattering, and upper bound values of undefined dynamics which affects system performance, high wear of moving mechanical parts and high heat losses in power circuits. The radial basis function neural network is designed to compensate for uncertainties and external disturbances, which allows small switching gain. Hence, the chattering can be significantly reduced. In addition, an adaptive control law is used to adaptively converge small switching gains of the sliding mode controller as the neural network reduces model uncertainties. The effectiveness of the proposed control strategy is demonstrated by simulations which are conducted by using the combination of Sim-Mechanics and SolidWorks.\",\"PeriodicalId\":231209,\"journal\":{\"name\":\"Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent Control\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3386164.3387261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3386164.3387261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive Neural Sliding Mode Control for 3-DOF Planar Parallel Manipulators
This paper proposes a combination between a neural network and an adaptive sliding mode control for trajectory tracking control of a 3-DOF planar parallel manipulator. It has a complicated dynamic model, including modelling uncertainties, frictional uncertainties and external disturbances. The proposed control algorithm is to use a PID sliding mode surface, an adaptive sliding mode controller with a neural network to overcome the drawback of the traditional sliding mode controllers, such as slow response rate with variation of uncertainties and external disturbances, chattering, and upper bound values of undefined dynamics which affects system performance, high wear of moving mechanical parts and high heat losses in power circuits. The radial basis function neural network is designed to compensate for uncertainties and external disturbances, which allows small switching gain. Hence, the chattering can be significantly reduced. In addition, an adaptive control law is used to adaptively converge small switching gains of the sliding mode controller as the neural network reduces model uncertainties. The effectiveness of the proposed control strategy is demonstrated by simulations which are conducted by using the combination of Sim-Mechanics and SolidWorks.