{"title":"超声信号处理的特征提取方案","authors":"Kyungmi Lee","doi":"10.1109/ICCIT.2010.5711085","DOIUrl":null,"url":null,"abstract":"Signals are a popular mean of representing information, and signal processing is of great importance. Feature extraction plays a critical role in signal processing, and many approaches have been studies. This article critically reviews these signal feature extraction approaches to provide an overview of feature extraction approaches, to critically address important issues, and compare and contract reported techniques.","PeriodicalId":131337,"journal":{"name":"5th International Conference on Computer Sciences and Convergence Information Technology","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Feature extraction schemes for ultrasonic signal processing\",\"authors\":\"Kyungmi Lee\",\"doi\":\"10.1109/ICCIT.2010.5711085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Signals are a popular mean of representing information, and signal processing is of great importance. Feature extraction plays a critical role in signal processing, and many approaches have been studies. This article critically reviews these signal feature extraction approaches to provide an overview of feature extraction approaches, to critically address important issues, and compare and contract reported techniques.\",\"PeriodicalId\":131337,\"journal\":{\"name\":\"5th International Conference on Computer Sciences and Convergence Information Technology\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"5th International Conference on Computer Sciences and Convergence Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIT.2010.5711085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Conference on Computer Sciences and Convergence Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIT.2010.5711085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

信号是表示信息的常用手段,信号处理非常重要。特征提取在信号处理中起着至关重要的作用,人们研究了许多方法。本文批判性地回顾了这些信号特征提取方法,以提供特征提取方法的概述,批判性地解决重要问题,并比较和合同报道的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature extraction schemes for ultrasonic signal processing
Signals are a popular mean of representing information, and signal processing is of great importance. Feature extraction plays a critical role in signal processing, and many approaches have been studies. This article critically reviews these signal feature extraction approaches to provide an overview of feature extraction approaches, to critically address important issues, and compare and contract reported techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quality factors of business value and service level measurement for SOA Study on the inter-organizational tacit knowledge transfer network Network joining algorithm for mobile nodes in ubiquitous sensor networks Network security for virtual machine in cloud computing Action recognition using hybrid spatio-temporal bag-of-features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1