分析数据库应用程序以检测SQL注入攻击

E. Bertino, Ashish Kamra, James P. Early
{"title":"分析数据库应用程序以检测SQL注入攻击","authors":"E. Bertino, Ashish Kamra, James P. Early","doi":"10.1109/PCCC.2007.358926","DOIUrl":null,"url":null,"abstract":"Countering threats to an organization's internal databases from database applications is an important area of research. In this paper, we propose a novel framework based on anomaly detection techniques, to detect malicious behaviour of database application programs. Specifically, we create a fingerprint of an application program based on SQL queries submitted by it to a database. We then use association rule mining techniques on this fingerprint to extract useful rules. These rules succinctly represent the normal behaviour of the database application. We then apply an anomaly detection algorithm to detect queries that do not conform to these rules. We further demonstrate how this model can be used to detect SQL Injection attacks on databases. We show the validity and usefulness of our approach on synthetically generated datasets and SQL Injected queries. Experimental results show that our techniques are effective in addressing various types of SQL Injection threat scenarios.","PeriodicalId":356565,"journal":{"name":"2007 IEEE International Performance, Computing, and Communications Conference","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":"{\"title\":\"Profiling Database Application to Detect SQL Injection Attacks\",\"authors\":\"E. Bertino, Ashish Kamra, James P. Early\",\"doi\":\"10.1109/PCCC.2007.358926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Countering threats to an organization's internal databases from database applications is an important area of research. In this paper, we propose a novel framework based on anomaly detection techniques, to detect malicious behaviour of database application programs. Specifically, we create a fingerprint of an application program based on SQL queries submitted by it to a database. We then use association rule mining techniques on this fingerprint to extract useful rules. These rules succinctly represent the normal behaviour of the database application. We then apply an anomaly detection algorithm to detect queries that do not conform to these rules. We further demonstrate how this model can be used to detect SQL Injection attacks on databases. We show the validity and usefulness of our approach on synthetically generated datasets and SQL Injected queries. Experimental results show that our techniques are effective in addressing various types of SQL Injection threat scenarios.\",\"PeriodicalId\":356565,\"journal\":{\"name\":\"2007 IEEE International Performance, Computing, and Communications Conference\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"70\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Performance, Computing, and Communications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCCC.2007.358926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Performance, Computing, and Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCCC.2007.358926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70

摘要

应对数据库应用程序对组织内部数据库的威胁是一个重要的研究领域。本文提出了一种基于异常检测技术的框架来检测数据库应用程序的恶意行为。具体来说,我们根据应用程序向数据库提交的SQL查询创建应用程序的指纹。然后,我们对该指纹使用关联规则挖掘技术提取有用的规则。这些规则简洁地表示了数据库应用程序的正常行为。然后我们应用异常检测算法来检测不符合这些规则的查询。我们将进一步演示如何使用该模型检测数据库上的SQL注入攻击。我们展示了我们的方法在合成生成的数据集和SQL注入查询上的有效性和有用性。实验结果表明,我们的技术可以有效地解决各种类型的SQL注入威胁场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Profiling Database Application to Detect SQL Injection Attacks
Countering threats to an organization's internal databases from database applications is an important area of research. In this paper, we propose a novel framework based on anomaly detection techniques, to detect malicious behaviour of database application programs. Specifically, we create a fingerprint of an application program based on SQL queries submitted by it to a database. We then use association rule mining techniques on this fingerprint to extract useful rules. These rules succinctly represent the normal behaviour of the database application. We then apply an anomaly detection algorithm to detect queries that do not conform to these rules. We further demonstrate how this model can be used to detect SQL Injection attacks on databases. We show the validity and usefulness of our approach on synthetically generated datasets and SQL Injected queries. Experimental results show that our techniques are effective in addressing various types of SQL Injection threat scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Profiling Database Application to Detect SQL Injection Attacks Protecting First-Level Responder Resources in an IP-based Emergency Services Architecture Scalable and Decentralized Content-Aware Dispatching in Web Clusters CT-RBAC: A Temporal RBAC Model with Conditional Periodic Time Mobility Support of Multi-User Services in Next Generation Wireless Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1