Anthony B. Villa, Rogie P. Jacinto, Michell Ann A. Ramos, S. P. L. Alagao
{"title":"基于android应用程序测定甜瓜“Sweet-16”成熟度","authors":"Anthony B. Villa, Rogie P. Jacinto, Michell Ann A. Ramos, S. P. L. Alagao","doi":"10.1109/ICECCE52056.2021.9514216","DOIUrl":null,"url":null,"abstract":"Watermelon is one of the most mouth-watering fruits that people like to eat, especially when it comes to summer-a nondestructive way of determining the ripeness of watermelon considered as a challenge for its customers. This study addresses the problem of identifying between ripe and unripe watermelon using an android mobile to be available remotely. The application of a scientific strategy for determining ripeness is through image processing, which is a more capable, non-destructive, and cost-effective method. Classified samples of Sweet-16 watermelon from the farm and wet market were processed using Open-CV Python and running Tensorflow as the backend for Keras for building and training the CNN classifier. Classification of Sweet-16 watermelon is Unripe and Ripe, and Unknown. The study achieved an overall accuracy of 89.52% regardless of the position of the watermelon as captured.","PeriodicalId":302947,"journal":{"name":"2021 International Conference on Electrical, Communication, and Computer Engineering (ICECCE)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Determination of Citrullus Lanatus “Sweet-16” Ripeness Using Android-Based Application\",\"authors\":\"Anthony B. Villa, Rogie P. Jacinto, Michell Ann A. Ramos, S. P. L. Alagao\",\"doi\":\"10.1109/ICECCE52056.2021.9514216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Watermelon is one of the most mouth-watering fruits that people like to eat, especially when it comes to summer-a nondestructive way of determining the ripeness of watermelon considered as a challenge for its customers. This study addresses the problem of identifying between ripe and unripe watermelon using an android mobile to be available remotely. The application of a scientific strategy for determining ripeness is through image processing, which is a more capable, non-destructive, and cost-effective method. Classified samples of Sweet-16 watermelon from the farm and wet market were processed using Open-CV Python and running Tensorflow as the backend for Keras for building and training the CNN classifier. Classification of Sweet-16 watermelon is Unripe and Ripe, and Unknown. The study achieved an overall accuracy of 89.52% regardless of the position of the watermelon as captured.\",\"PeriodicalId\":302947,\"journal\":{\"name\":\"2021 International Conference on Electrical, Communication, and Computer Engineering (ICECCE)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Electrical, Communication, and Computer Engineering (ICECCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECCE52056.2021.9514216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Electrical, Communication, and Computer Engineering (ICECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCE52056.2021.9514216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Determination of Citrullus Lanatus “Sweet-16” Ripeness Using Android-Based Application
Watermelon is one of the most mouth-watering fruits that people like to eat, especially when it comes to summer-a nondestructive way of determining the ripeness of watermelon considered as a challenge for its customers. This study addresses the problem of identifying between ripe and unripe watermelon using an android mobile to be available remotely. The application of a scientific strategy for determining ripeness is through image processing, which is a more capable, non-destructive, and cost-effective method. Classified samples of Sweet-16 watermelon from the farm and wet market were processed using Open-CV Python and running Tensorflow as the backend for Keras for building and training the CNN classifier. Classification of Sweet-16 watermelon is Unripe and Ripe, and Unknown. The study achieved an overall accuracy of 89.52% regardless of the position of the watermelon as captured.