基于深度学习的水稻病虫害分类识别

Ahmad Arib Alfarisy, Quan Chen, M. Guo
{"title":"基于深度学习的水稻病虫害分类识别","authors":"Ahmad Arib Alfarisy, Quan Chen, M. Guo","doi":"10.1145/3208788.3208795","DOIUrl":null,"url":null,"abstract":"Pests and diseases are a threat to paddy production, especially in Indonesia, but identification remains to be a challenge in massive scale and automatically. Increasing smartphone usage and deep learning advance create an opportunity to answer this problem. Collecting 4,511 images from four language using search engines, and augment it to develop diverse data set. This dataset fed into CaffeNet model and processed with Caffe framework. Experiment result in the model achieved accuracy 87%, which is higher than random selection 7.6%.","PeriodicalId":211585,"journal":{"name":"Proceedings of 2018 International Conference on Mathematics and Artificial Intelligence","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"Deep learning based classification for paddy pests & diseases recognition\",\"authors\":\"Ahmad Arib Alfarisy, Quan Chen, M. Guo\",\"doi\":\"10.1145/3208788.3208795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pests and diseases are a threat to paddy production, especially in Indonesia, but identification remains to be a challenge in massive scale and automatically. Increasing smartphone usage and deep learning advance create an opportunity to answer this problem. Collecting 4,511 images from four language using search engines, and augment it to develop diverse data set. This dataset fed into CaffeNet model and processed with Caffe framework. Experiment result in the model achieved accuracy 87%, which is higher than random selection 7.6%.\",\"PeriodicalId\":211585,\"journal\":{\"name\":\"Proceedings of 2018 International Conference on Mathematics and Artificial Intelligence\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2018 International Conference on Mathematics and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3208788.3208795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2018 International Conference on Mathematics and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208788.3208795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

摘要

病虫害对水稻生产构成威胁,特别是在印度尼西亚,但大规模和自动识别病虫害仍然是一项挑战。智能手机使用量的增加和深度学习的进步为解决这个问题创造了机会。使用搜索引擎从四种语言中收集4,511张图像,并对其进行扩充,形成多样化的数据集。将该数据集输入到CaffeNet模型中,并使用Caffe框架进行处理。实验结果表明,该模型的准确率为87%,比随机选择的准确率高7.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep learning based classification for paddy pests & diseases recognition
Pests and diseases are a threat to paddy production, especially in Indonesia, but identification remains to be a challenge in massive scale and automatically. Increasing smartphone usage and deep learning advance create an opportunity to answer this problem. Collecting 4,511 images from four language using search engines, and augment it to develop diverse data set. This dataset fed into CaffeNet model and processed with Caffe framework. Experiment result in the model achieved accuracy 87%, which is higher than random selection 7.6%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Two-point boundary value problems for fuzzy differential equations under generalized differentiability Background subtraction via online box constrained RPCA Bayesian analysis for multivariate skew-normal reproductive dispersion random effects models A diversity-based method for class-imbalanced cost-sensitive learning The Merrifield-Simmons index of two classes of lexicographic product graphs of corona graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1