潜在类模型中形态学的概率学习范式

Erwin Chan
{"title":"潜在类模型中形态学的概率学习范式","authors":"Erwin Chan","doi":"10.3115/1622165.1622174","DOIUrl":null,"url":null,"abstract":"This paper introduces the probabilistic paradigm, a probabilistic, declarative model of morphological structure. We describe an algorithm that recursively applies Latent Dirichlet Allocation with an orthogonality constraint to discover morphological paradigms as the latent classes within a suffix-stem matrix. We apply the algorithm to data preprocessed in several different ways, and show that when suffixes are distinguished for part of speech and allomorphs or gender/conjugational variants are merged, the model is able to correctly learn morphological paradigms for English and Spanish. We compare our system with Linguistica (Goldsmith 2001), and discuss the advantages of the probabilistic paradigm over Linguistica's signature representation.","PeriodicalId":186158,"journal":{"name":"Special Interest Group on Computational Morphology and Phonology Workshop","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Learning Probabilistic Paradigms for Morphology in a Latent Class Model\",\"authors\":\"Erwin Chan\",\"doi\":\"10.3115/1622165.1622174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces the probabilistic paradigm, a probabilistic, declarative model of morphological structure. We describe an algorithm that recursively applies Latent Dirichlet Allocation with an orthogonality constraint to discover morphological paradigms as the latent classes within a suffix-stem matrix. We apply the algorithm to data preprocessed in several different ways, and show that when suffixes are distinguished for part of speech and allomorphs or gender/conjugational variants are merged, the model is able to correctly learn morphological paradigms for English and Spanish. We compare our system with Linguistica (Goldsmith 2001), and discuss the advantages of the probabilistic paradigm over Linguistica's signature representation.\",\"PeriodicalId\":186158,\"journal\":{\"name\":\"Special Interest Group on Computational Morphology and Phonology Workshop\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Interest Group on Computational Morphology and Phonology Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/1622165.1622174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Interest Group on Computational Morphology and Phonology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1622165.1622174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

本文介绍了概率范式,即形态结构的概率陈述模型。我们描述了一种递归地应用具有正交性约束的潜狄利克雷分配来发现词根矩阵中作为潜类的形态范式的算法。我们将该算法应用于几种不同方式的预处理数据,结果表明,当词性后缀被区分,异型或性别/共轭变体被合并时,该模型能够正确学习英语和西班牙语的形态范式。我们将我们的系统与Linguistica (Goldsmith 2001)进行了比较,并讨论了概率范式相对于Linguistica签名表示的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning Probabilistic Paradigms for Morphology in a Latent Class Model
This paper introduces the probabilistic paradigm, a probabilistic, declarative model of morphological structure. We describe an algorithm that recursively applies Latent Dirichlet Allocation with an orthogonality constraint to discover morphological paradigms as the latent classes within a suffix-stem matrix. We apply the algorithm to data preprocessed in several different ways, and show that when suffixes are distinguished for part of speech and allomorphs or gender/conjugational variants are merged, the model is able to correctly learn morphological paradigms for English and Spanish. We compare our system with Linguistica (Goldsmith 2001), and discuss the advantages of the probabilistic paradigm over Linguistica's signature representation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Colexifications for Bootstrapping Cross-lingual Datasets: The Case of Phonology, Concreteness, and Affectiveness KU-CST at the SIGMORPHON 2020 Task 2 on Unsupervised Morphological Paradigm Completion Linguist vs. Machine: Rapid Development of Finite-State Morphological Grammars Exploring Neural Architectures And Techniques For Typologically Diverse Morphological Inflection SIGMORPHON 2020 Task 0 System Description: ETH Zürich Team
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1