Light-CNN与FaceNet人脸识别与维护方法的对比分析

Huang Yea-Shuan, Mahmood Alhlffee
{"title":"Light-CNN与FaceNet人脸识别与维护方法的对比分析","authors":"Huang Yea-Shuan, Mahmood Alhlffee","doi":"10.1145/3571560.3571575","DOIUrl":null,"url":null,"abstract":"Maintaining the identity while synthesizing the frontal view image is the most critical step in developing a \"recognition via generation\" framework. To this end, this paper investigates, tests and compares the performance of two deep learning architectures: Light-CNN and FaceNet. The Light-CNN is used to learn a robust feature for face verification tasks that produces a high-level facial identity accuracy over many traditional deep learning models. FaceNet, on the other hand, is a model to maps face images into a compact Euclidean space where distances directly represent a measure of face similarity. In our comparison, we use the TP-GAN model to perform several pre-processing stages. The face features are then extracted from the synthesized face images using Light-CNN and FaceNet as 256- and 128-dimensional representations, respectively. We evaluate the accuracy performances of Light-CNN and FaceNet architectures on Multi-PIE and FEI datasets.","PeriodicalId":143909,"journal":{"name":"Proceedings of the 6th International Conference on Advances in Artificial Intelligence","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of the Light-CNN and FaceNet methods for identifying and maintaining human faces\",\"authors\":\"Huang Yea-Shuan, Mahmood Alhlffee\",\"doi\":\"10.1145/3571560.3571575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maintaining the identity while synthesizing the frontal view image is the most critical step in developing a \\\"recognition via generation\\\" framework. To this end, this paper investigates, tests and compares the performance of two deep learning architectures: Light-CNN and FaceNet. The Light-CNN is used to learn a robust feature for face verification tasks that produces a high-level facial identity accuracy over many traditional deep learning models. FaceNet, on the other hand, is a model to maps face images into a compact Euclidean space where distances directly represent a measure of face similarity. In our comparison, we use the TP-GAN model to perform several pre-processing stages. The face features are then extracted from the synthesized face images using Light-CNN and FaceNet as 256- and 128-dimensional representations, respectively. We evaluate the accuracy performances of Light-CNN and FaceNet architectures on Multi-PIE and FEI datasets.\",\"PeriodicalId\":143909,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on Advances in Artificial Intelligence\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on Advances in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3571560.3571575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Advances in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3571560.3571575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在合成正面视图图像的同时保持身份是建立“生成识别”框架的最关键步骤。为此,本文调查、测试和比较了两种深度学习架构:Light-CNN和FaceNet的性能。Light-CNN用于学习人脸验证任务的鲁棒特征,该特征比许多传统深度学习模型产生更高的人脸识别精度。另一方面,FaceNet是一个将人脸图像映射到紧凑的欧几里得空间的模型,其中距离直接表示人脸相似性的度量。在我们的比较中,我们使用TP-GAN模型执行几个预处理阶段。然后使用Light-CNN和FaceNet分别作为256维和128维表示从合成的人脸图像中提取人脸特征。我们评估了Light-CNN和FaceNet架构在Multi-PIE和FEI数据集上的精度性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative analysis of the Light-CNN and FaceNet methods for identifying and maintaining human faces
Maintaining the identity while synthesizing the frontal view image is the most critical step in developing a "recognition via generation" framework. To this end, this paper investigates, tests and compares the performance of two deep learning architectures: Light-CNN and FaceNet. The Light-CNN is used to learn a robust feature for face verification tasks that produces a high-level facial identity accuracy over many traditional deep learning models. FaceNet, on the other hand, is a model to maps face images into a compact Euclidean space where distances directly represent a measure of face similarity. In our comparison, we use the TP-GAN model to perform several pre-processing stages. The face features are then extracted from the synthesized face images using Light-CNN and FaceNet as 256- and 128-dimensional representations, respectively. We evaluate the accuracy performances of Light-CNN and FaceNet architectures on Multi-PIE and FEI datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A semantic real-time activity recognition system for sequential procedures in vocational learning An Effective Implementation of Detection and Retrieval Property of Episodic Memory Measuring Airport Service Quality Using Machine Learning Algorithms Prospects for the use of algebraic rings to describe the operation of convolutional neural networks Optimizing Ethanol Production in Escherichia Coli Using a Hybrid of Particle Swarm Optimization and Artificial Bee Colony
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1