{"title":"评估定量神经网络的准确性和对抗鲁棒性","authors":"Korn Sooksatra, P. Rivas, J. Orduz","doi":"10.1109/CSCI54926.2021.00097","DOIUrl":null,"url":null,"abstract":"Machine learning can thrust technological advances and benefit different application areas. Further, with the rise of quantum computing, machine learning algorithms have begun to be implemented in a quantum environment; this is now referred to as quantum machine learning. There are several attempts to implement deep learning in quantum computers. Nevertheless, they were not entirely successful. Then, a convolutional neural network (CNN) combined with an additional quanvolutional layer was discovered and called a quanvolutional neural network (QNN). A QNN has shown a higher performance over a classical CNN. As a result, QNNs could achieve better accuracy and loss values than the classical ones and show their robustness against adversarial examples generated from their classical versions. This work aims to evaluate the accuracy, loss values, and adversarial robustness of QNNs compared to CNNs.","PeriodicalId":206881,"journal":{"name":"2021 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluating Accuracy and Adversarial Robustness of Quanvolutional Neural Networks\",\"authors\":\"Korn Sooksatra, P. Rivas, J. Orduz\",\"doi\":\"10.1109/CSCI54926.2021.00097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning can thrust technological advances and benefit different application areas. Further, with the rise of quantum computing, machine learning algorithms have begun to be implemented in a quantum environment; this is now referred to as quantum machine learning. There are several attempts to implement deep learning in quantum computers. Nevertheless, they were not entirely successful. Then, a convolutional neural network (CNN) combined with an additional quanvolutional layer was discovered and called a quanvolutional neural network (QNN). A QNN has shown a higher performance over a classical CNN. As a result, QNNs could achieve better accuracy and loss values than the classical ones and show their robustness against adversarial examples generated from their classical versions. This work aims to evaluate the accuracy, loss values, and adversarial robustness of QNNs compared to CNNs.\",\"PeriodicalId\":206881,\"journal\":{\"name\":\"2021 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCI54926.2021.00097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI54926.2021.00097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluating Accuracy and Adversarial Robustness of Quanvolutional Neural Networks
Machine learning can thrust technological advances and benefit different application areas. Further, with the rise of quantum computing, machine learning algorithms have begun to be implemented in a quantum environment; this is now referred to as quantum machine learning. There are several attempts to implement deep learning in quantum computers. Nevertheless, they were not entirely successful. Then, a convolutional neural network (CNN) combined with an additional quanvolutional layer was discovered and called a quanvolutional neural network (QNN). A QNN has shown a higher performance over a classical CNN. As a result, QNNs could achieve better accuracy and loss values than the classical ones and show their robustness against adversarial examples generated from their classical versions. This work aims to evaluate the accuracy, loss values, and adversarial robustness of QNNs compared to CNNs.