基于熵的宽带用户业务行为分析

Yinan Dou, Peng Liu, Yiming Chen, Zhenming Lei
{"title":"基于熵的宽带用户业务行为分析","authors":"Yinan Dou, Peng Liu, Yiming Chen, Zhenming Lei","doi":"10.1109/ICNIDC.2009.5360875","DOIUrl":null,"url":null,"abstract":"With the rapid development of Internet, network user behavior analysis is getting more and more attention. In this paper, an algorithm combining entropy concept and clustering method is proposed to analyze current broadband users' usage modes of network services, providing a strong support for further analysis or commercial applications. This algorithm can complete the process of division or clustering automatically, without requiring user to input any parameters associated with clustering. And it also can adapt to data set with different shape and size. Experiments have shown promising results when applying this algorithm to classify network users.","PeriodicalId":127306,"journal":{"name":"2009 IEEE International Conference on Network Infrastructure and Digital Content","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Entropy based broadband user service behavior analysis\",\"authors\":\"Yinan Dou, Peng Liu, Yiming Chen, Zhenming Lei\",\"doi\":\"10.1109/ICNIDC.2009.5360875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of Internet, network user behavior analysis is getting more and more attention. In this paper, an algorithm combining entropy concept and clustering method is proposed to analyze current broadband users' usage modes of network services, providing a strong support for further analysis or commercial applications. This algorithm can complete the process of division or clustering automatically, without requiring user to input any parameters associated with clustering. And it also can adapt to data set with different shape and size. Experiments have shown promising results when applying this algorithm to classify network users.\",\"PeriodicalId\":127306,\"journal\":{\"name\":\"2009 IEEE International Conference on Network Infrastructure and Digital Content\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Network Infrastructure and Digital Content\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNIDC.2009.5360875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Network Infrastructure and Digital Content","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNIDC.2009.5360875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着互联网的快速发展,网络用户行为分析越来越受到人们的关注。本文提出了一种结合熵概念和聚类方法的算法来分析当前宽带用户对网络业务的使用方式,为进一步分析或商业应用提供有力支持。该算法可以自动完成分割或聚类过程,不需要用户输入任何与聚类相关的参数。它还能适应不同形状和大小的数据集。应用该算法对网络用户进行分类,取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Entropy based broadband user service behavior analysis
With the rapid development of Internet, network user behavior analysis is getting more and more attention. In this paper, an algorithm combining entropy concept and clustering method is proposed to analyze current broadband users' usage modes of network services, providing a strong support for further analysis or commercial applications. This algorithm can complete the process of division or clustering automatically, without requiring user to input any parameters associated with clustering. And it also can adapt to data set with different shape and size. Experiments have shown promising results when applying this algorithm to classify network users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel web page duplication detection framework A new generation process of conceptual architecture based on component The implementation and comparison analysis of subtree filtering and Xpath capability in NETCONF Single image defogging Multiple description coding for wideband audio signal transmission
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1